[1] SONG, J. Mechanics of stretchable electronics. Current Opinion in Solid State & Materials Science, 19(3), 160-170(2015) [2] CHENG, X. and ZHANG, Y. H. Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Advanced Materials, 31(36), 1901895.1-1901895.27(2019) [3] CAI, M., NIE, S., DU, Y., WANG, C., and SONG, J. Soft elastomers with programmable stiffness as strain-isolating substrates for stretchable electronics. ACS Applied Materials & Interfaces, 11, 14340-14346(2019) [4] SONG, J., FENG, X., and HUANG, Y. Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 3, 128-143(2015) [5] LINGHU, C., ZHANG, S., WANG, C., YU, K., LI, C., ZENG, Y., ZHU, H., JIN, X., YOU, Z., and SONG, J. Universal SMP gripper with massive and selective capabilities for multi-scaled, arbitrarily shaped objects. Science Advances, 6(7), eaay5120(2020) [6] HUANG, Y. A., WU, H., XIAO, L., DUAN, Y., ZHU, H., BIAN, J., YE, D., and YIN, Z. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 6, 642-683(2019) [7] LINGHU, C., WANG, C., CEN, N., WU, J., LAI, Z., and SONG, J. Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum. Soft Matter, 15(1), 30-37(2019) [8] ZHANG, X., LINGHU, C., and SONG, J. Three-dimensional mechanical modeling of magnet-controlled transfer printing. International Journal of Applied Mechanics, 11(2), 1950042(2019) [9] MA, Y., ZHANG, Y., CAI, S., HAN, Z., LIU, X., WANG, F., CAO, Y., WANG, Z., LI, H., CHEN, Y., and FENG, X. Flexible hybrid electronics for digital healthcare. Advanced Materials, 32(15), 1902062(2019) [10] ZOU, Z. N., ZHU, C. P., LI, Y., LEI, F. X., ZHANG, W., and XIAO, J. L. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Science Advances, 4(2), eaaq0508(2018) [11] YAMAMOTO, Y., HARADA, S., YAMAMOTO, D., HONDA, W., ARIE, T., AKITA, S., and TAKEI, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2(11), e1601473(2016) [12] HAN, S., KIM, M. K., WANG, B., WIE, D. S., WANG, S. D., and LEE, C. H. Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Advanced Materials, 28(46), 10257-10265(2016) [13] WEBB, R. C., MA, Y., KRISHNAN, S., LI, Y., YOON, S., GUO, X., FENG, X., SHI, Y., SEIDEL, M., CHO, N. H., KURNIAWAN, J., AHAD, J., SHETH, N., KIM, J., TAYLOR, VI. J. G., DARLINGTONN, T., CHANG, K., HUANG, W., AYERS, J., GRUEBELE, A., PIELAK, R. M., SLEPIAN, M. J., HUANG, Y., GORBACH, A. M., and ROGERS, J. A. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Science Advances, 1(9), e1500701(2015) [14] CHIANG, P. Y., CHAO, C. P., TARNG, D. C., and YANG, C. Y. A novel wireless photoplethysmography blood-flow volume sensor for assessing arteriovenous fistula of hemodialysis patients. IEEE Transactions on Industrial Electronics, 64(12), 9626-9635(2017) [15] LI, H., XU, Y., LI, X., CHEN, Y., JIANG, Y., ZHANG, C., LU, B., WANG, J., MA, Y., CHEN, Y., HUANG, Y., DING, M., SU, H., SONG, G., LUO, Y., and FENG, X., Epidermal inorganic optoelectronics for blood oxygen measurement. Advanced Healthcare Materials, 6, 1601013(2017) [16] LIU, Y., WANG, H., ZHAN, W., ZHANG, M., QIN, H., and XIE, Y. Flexible, stretchable sensors for wearable health monitoring:sensing mechanisms, materials, fabrication strategies and features. Sensors, 18(2), 645(2018) [17] PARK, S., FUKUDA, K., WANG, M., LEE, C., YOKOTA, T., JIN, H., JINNO, H., KIMURA, H., ZALAR, P., MATSUHISA, N., UMEZU, S., BAZAN, G. C., and SOMEYA, T. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Advanced Materials, 30(34), 1802359.1-1802359.8(2018) [18] YUAN, J. H., SHI, Y., PHARR, M., FENG, X., ROGERS, J. A., and HUANG, Y. A mechanics model for sensors imperfectly bonded to the skin for determination of the Young's moduli of epidermis and dermis. Journal of Applied Mechanics, 83(8), 0845011-0845013(2016) [19] PARK, B., KIM, J., KANG, D., JEONG, C., KIM, K. S., KIM, J. U., YOO, P. J., and KIM, T. I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors:effect of crack depth. Advanced Materials, 28, 8130-8137(2016) [20] CHEN, Y., LU, S., ZHANG, S., LI, Y., QU, Z., CHEN, Y., LU, B., WANG, X., and FENG, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances, 3(12), e1701629(2017) [21] LEE, H., SONG, C., HONG, Y. S., KIM, M. S., CHO, H. R., KANG, T., SHIN, K., CHOI, S. H., HYEON, T., and KIM, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 3(3), e1601314(2017) [22] YAN, Z. C., PAN, T. S., XUE, M. M., CHEN, C. Y., CUI, Y., YAO, T., HUANG, L., LIAO, F. Y., JING, W., ZHANG, H. L., GAO, M., GUO, D. Q., XIA, T., and LIN, Y. Thermal release transfer printing for stretchable conformal bioelectronics. Advanced Science, 4(11), 1700251(2017) [23] ZHANG, S., WANG, C., GAO, H., YU, C., YAN, Q., LU, Y., TAO, Z., LINGHU, C., CHEN, Z., XU, K., and SONG, J. A removable insertion shuttle for ultraflexible neural probe implantation with stable chronic brain electrophysiological recording. Advanced Materials Interfaces, 7(6), 1901775(2020) [24] KIM, D. H., LU, N. S., MA, R., KIM, Y. S., KIM, R. H., WANG, S. D., WU, J., WON, S. M., TAO, H., ISLAM, A., YU, K. J., KIM, T. I., CHOWDHURY, R., YING, M., XU, L. Z., LI, M., CHUNG, H. J., KEUM, H., MCCORMICK, M., LIU, P., ZHANG, Y. W., OMENETTO, F. G., HUANG, Y., COLEMAN, T., and ROGERS, J. A. Epidermal electronics. Science, 333, 838-843(2011) [25] JEONG, S. H., CHEN, S., HUO, J., GAMSTEDT, E. K., LIU, J., ZHANG, S. L., ZHANG, Z. B., HJORT, K., and WU, Z. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Scientific Reports, 5, 18257(2015) [26] ZENG, X. L., SUN, J. J., YAO, Y. M., SUN, R., XU, J. B., and WONG, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano, 11, 5167-5178(2017) [27] LI, Y., CHEN, J., XING, Y., and SONG, J. Thermal management of micro-scale inorganic light-emittng diodes on an orthotropic substrate for biointegrated applications. Scientific Reports, 7(1), 6638(2017) [28] JUNG, H. H., SONG, J., NIE, S., JUNG, H. N., KIM, M. S., JEONG, J. W., SONG, Y. M., SONG, J., and JANG, K. I. Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices. Advanced Materials Technologies, 23, 1800159(2018) [29] SHI, Y. L., HU, M., XING, Y. F., and LI, Y. H. Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites. Materials & Design, 185, 108219(2020) [30] SHI, Y. L., WANG, C. J., YIN, Y. F., LI, Y. H., XING, Y. F., and SONG, J. Z. Functional soft composites as thermal protecting substrates for wearable electronics. Advanced Functional Materials, 129(45), 1905470(2019) [31] VOLLER, V. R. Fast implicit finite-difference method for the analysis of phase change problems. Numerical Heat Transfer Part B, 17, 155-169(1990) [32] CARSLAW, H. and JAEGER, J. Heat in Solids, Clarendon Press, Oxford (1959) [33] SHEN, X. Y., JIANG, C. R., LI, Y., and HUANG, J. P. Thermal metamaterial for convergent transfer of conductive heat with high efficiency. Applied Physics Letters, 109(20), 201906.1-201906.5(2016) [34] MARK, J. E. Polymer Data Handbook, Oxford University Press, New York (1999) [35] ISMAIL, K. A. R., ALVES, C. L. F., and MODESTO, M. S., Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering, 21, 53-77(2001) [36] FARID, M. M., KHUDHAIR, A. M., RAZACK, S. A. K., and AL-HALLAJ, S. A review on phase change energy storage:materials and applications. Energy Conversion & Management, 45(9-10), 1597-1615(2004) [37] AGYENIM, F., HEWITT, N., EAMES, P., and SMYTH, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(14), 615-628(2010) [38] CABEZA, L. F., CASTELL, A., BARRENECHE, C., GRACIA, A. D., and FERNANDEZ, A. I. Materials used as PCM in thermal energy storage in buildings:a review. Renewable and Sustainable Energy Reviews, 15(3), 1675-1695(2011) [39] XU, F., LU, T. J., and SEFFEN, K. A. Biothermomechanics of skin tissues. Journal of the Mechanics & Physics of Solids, 56(5), 1852-1884(2008) |