[1] LIANG, L. G., KONG, M. Q., ZHOU, S., SHENG, Y. F., and WANG, P. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Scientific Reports, 7, 46224(2017) [2] DALILI, A., SAMIEI, E., and HOORFAR, M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst, 144, 87-113(2019) [3] AL-FAQHERI, W., THIO, T. H. G., QASAIMEH, M. A., DIETZEL, A., and MADOU, M. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluidics and Nanofluidics, 21, 102(2017) [4] YEO, J. C., KENRY, ZHAO, Z. H., ZHANG, P., and WANG, Z. P. Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics, 12, 024103(2018) [5] WU, J., CUI, Y. W., XUAN, S. H., and GONG, X. L. 3D-printed microfluidic manipulation device integrated with magnetic array. Microfluidics and Nanofluidics, 22, 103(2018) [6] ZHI, S. T., SUN, X. C., FENG, Z., LEI, C., and ZHOU, Y. An innovative micro magnetic separator based on 3D micro-copper-coil exciting soft magnetic tips and FeNi wires for bio-target sorting. Microfluidics and Nanofluidics, 23, 43(2019) [7] LI, P., MAO, Z. M., PENG, Z. L., ZHOU, L. L., and CHEN, Y. C. Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences, 112, 4970-4975(2015) [8] BARESCH, D., THOMAS, J., and MARCHIANO, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Physical Review Letters, 116, 024301(2016) [9] LIN, S. L., LIN, T. Y., and FUH, M. R. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: an update. Electrophoresis, 35, 1275-1284(2014) [10] BISHOP, D. P., BLANES, L., WILSON, A. B., WILBANKS, T., and KILLEEN, K. Microfluidic high performance liquid chromatography-chip hyphenation to inductively coupled plasma-mass spectrometry. Journal of Chromatography A, 1497, 64-69(2017) [11] KOU, S. Z., CHENG, D. H., SUN, F., and HSING, I. Microfluidics and microbial engineering. Lab on a Chip, 16, 432-446(2016) [12] ZHU, T. T., CHENG, R., LEE, S. A., RAJARAMAN, E., and EITEMAN, M. A. Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluidics and Nanofluidics, 13, 645-654(2012) [13] POHL, H. A. The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 22, 869-871(1951) [14] POHL, H. A. and CRANE, J. S. Dielectrophoresis of cells. Biophysical Journal, 11, 711-727(1971) [15] YAO, J. F., ZHU, G. P., ZHAO, T., and TAKEI, M. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells — a review. Electrophoresis, 40, 1166-1177(2019) [16] HUGHES, M. P. Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics, 10, 032801(2016) [17] MORGAN, H., HUGHES, M. P., and GREEN, N. G. Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal, 77, 516-525(1999) [18] KHOSHMANESH, K., ZHANG, C., NAHAVANDI, S., BARATCHI, S., and MITCHELL, A. Dielectrophoretically patterned carbon nanotubes to sort microparticles. Electrophoresis, 31, 3380-3390(2010) [19] CHENG, I., CHANG, H., HOU, D., and CHANG, H. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics, 1, 021503(2007) [20] BUYONG, M. R., LARKI, F., FAIZ, M. S., HAMZAH, A. A., and YUNAS, J. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation. Sensors, 15, 10973-10990(2015) [21] YANG, F., YANG, X. M., JIANG, H., BULKHAULTS, P., and WOOD, P. Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics, 4, 013204(2010) [22] WU, Y. P., REN, Y. K., TAO, Y., HOU, L. K., and JIANG, H. Y. High-throughput separation, trapping, and manipulation of single cells and particles by combined dielectrophoresis at a bipolar electrode array. Analytical Chemistry, 90, 11461-11469(2018) [23] LI, M., LI, S. B., CAO, W. B., LI, W. H., and WEN, W. J. Improved concentration and separation of particles in a 3D dielectrophoretic chip integrating focusing, aligning and trapping. Microfluidics and Nanofluidics, 14, 527-539(2013) [24] LEWPIRIYAWONG, N., KANDASWAMY, K., YANG, C., IVANOV, V., and STOCKER, R. Microfluidic characterization and continuous separation of cells and particles using conducting poly (dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Analytical Chemistry, 83, 9579-9585(2011) [25] JIA, Y. K., REN, Y. K., and JIANG, H. Y. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis, 36, 1744-1753(2015) [26] JARAMILLO, M. D. C., TORRENTS, E., MARTINEZDUARTE, R., MADOU, M., and JU REZ, A. On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis, 31, 2921-2928(2010) [27] YILDIZHAN, Y., ERDEM, N., ISLAM, M., MARTINEZDUARTE, R., and ELITAS, M. Dielectrophoretic separation of live and dead monocytes using 3D carbon-electrodes. Sensors, 17, 2691(2017) [28] LIN, X. G., YAO, J., DONG, H., and CAO, X. D. Effective cell and particle sorting and separation in screen-printed continuous-flow microfluidic devices with 3D sidewall electrodes. Industrial & Engineering Chemistry Research, 55, 13085-13093(2016) [29] PUTTASWAMY, S. V., FISHLOCK, S., STEELE, D., SHI, Q. F., and LEE, C. Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation. Biomedical Physics & Engineering Express, 5, 055003(2019) [30] TAJIK, P., SAIDI, M. S., KASHANINEJAD, N., and NGUYEN, N. Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles. Industrial & Engineering Chemistry Research, 59, 3772-3783(2020) [31] HAJARI, M., EBADI, A., HEYDARI, M. J. F., FATHIPOUR, M., and SOLTANI, M. Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow. Microsystem Technologies: Micro and Nanosystems Information Storage and Processing Systems, 26, 751-763(2020) [32] LAPIZCO-ENCINAS, B. H. On the recent developments of insulator-based dielectrophoresis: a review. Electrophoresis, 40, 358-375(2019) [33] CUMMINGS, E. B. and SINGH, A. K. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Analytical Chemistry, 75, 4724-4731(2003) [34] JONES, P. V., SALMON, G. L., and ROS, A. Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Analytical Chemistry, 89, 1531-1539(2017) [35] ÇTIN, B. and LI, D. Q. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis. Electrophoresis, 31, 3035-3043(2010) [36] KHASHEI, H., LATIFI, H., SERESHT, M. J., and GHASEMI, A. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis. Electrophoresis, 37, 775-785(2016) [37] LENTZ, C. J., HIDALGOCABALLERO, S., and LAPIZCOENCINAS, B. H. Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. Biomicrofluidics, 13, 044114(2019) [38] GAN, L., CHAO, T., CAMACHOALANIS, F., and ROS, A. Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis. Analytical Chemistry, 85, 11427-11434(2013) [39] NAKANO, A., CHAO, T., CAMACHOALANIS, F., and ROS, A. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis, 32, 2314-2322(2011) [40] NAKANO, A., CAMACHOALANIS, F., CHAO, T., and ROS, A. Tuning direct current streaming dielectrophoresis of proteins. Biomicrofluidics, 6, 034108(2012) [41] ABDALLAH, B. G., CHAO, T., KUPITZ, C., FROMME, P., and ROS, A. Dielectrophoretic sorting of membrane protein nanocrystals. ACS Nano, 7, 9129-9137(2013) [42] ABDALLAH, B. G., ZATSEPIN, N. A., ROYCHOWDHURY, S., COE, J., and CONRAD, C. E. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Structural Dynamics, 2, 041719(2015) [43] ABDALLAH, B. G., ROYCHOWDHURY, S., COE, J., FROMME, P., and ROS, A. High throughput protein nanocrystal fractionation in a microfluidic sorter. Analytical Chemistry, 87, 4159-4167(2015) [44] LUO, J. H., ABDALLAH, B. G., WOLKEN, G. G., ARRIAGA, E. A., and ROS, A. Insulator-based dielectrophoresis of mitochondria. Biomicrofluidics, 8, 021801(2014) [45] LUO, J. H., MURATORE, K. A., ARRIAGA, E. A., and ROS, A. Deterministic absolute negative mobility for micro- and submicrometer particles induced in a microfluidic device. Analytical Chemistry, 88, 5920-5927(2016) [46] RABBANI, M. T., SCHMIDT, C. F., and ROS, A. Single-walled carbon nanotubes probed with insulator-based dielectrophoresis. Analytical Chemistry, 89, 13235-13244(2017) [47] PENA, A. C. D., REDZUAN, N. H. M., ABAJORGA, M. K., HILL, N., and THOMAS, J. A. Analysis of bacteriophages with insulator-based dielectrophoresis. Micromachines, 10, 450(2019) [48] AGHAAMOO, M., AGHILINEJAD, A., CHEN, X. L., and XU, J. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis, 40, 1486-1493(2019) [49] RAMOS, A., MORGAN, H., GREEN, N. G., and CASTELLANOS, A. Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics, 31, 2338(1998) [50] HAWKINS, B. G. and KIRBY, B. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis, 31, 3622-3633(2010) [51] GONZLEZ, A. G., RAMOS, A., MORGAN, H., GREEN, N. G., and CASTELLANOS, A. Electrothermal flows generated by alternating and rotating electric fields in microsystems. Journal of Fluid Mechanics, 564, 415-433(2006) [52] KALE, A., PATEL, S., HU, G. Q., and XUAN, X. C. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices. Electrophoresis, 34, 674-683(2013) [53] WANG, Q. R., DINGARI, N. N., and BUIE, C. R. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems. Electrophoresis, 38, 2576-2586(2017) [54] XIE, C. C., CHEN, B., YAN, B., and WU, J. K. A new method for particle manipulation by combination of dielectrophoresis and field-modulated electroosmotic vortex. Applied Mathematics and Mechanics (English Edition), 39, 409-422(2018) https://doi.org/10.1007/s10483-018-2303-9 [55] CHAO, K., CHEN, B., and WU, J. K. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomedical Microdevices, 12, 959-966(2010) [56] CHEN, X., REN, Y., LIU, W., FENG, X., and JIA, Y. A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmitic preforcusing and dielectrophoretic separation. Analytical Chemistry, 89, 9583-9592(2017) [57] SUN, H., REN, Y., LIU, W., FENG, X., and HOU, L. Flexible continuous particle bean switching via external-field-reconfigurable asymmetric induced-charge electroosmosis. Analytical Chemistry, 90, 11376-11384(2018) [58] WU, Y., REN, Y., TAO, Y., HOU, L., and JIANG, H. Large-scale single particle and cell trapping based on rotating electric field induced-charge electriisosis. Analytical Chemistry, 88, 11791-11798(2016) [59] SHEN, F., LI, Z., XUE, S., LI, M., and LIU, Z. Particle recirculating orbits within microvortices using microfluidics. Journal of Physics D: Applied Physics, 54, 025401(2020) [60] CHEN, X., REN, Y., HOU, L., FENG, X., and JIANG, T. Induced charge electro-osmotic particle separation. Nanoscale, 11, 6410-6421(2019) [61] CHEN, X., REN, Y., JIANG, T., HOU, L., and JIANG, H. High-throughput and multimodal separation of microbeads using cyclical induced-charge in size fractionation of crumpled graphene oxide balls. Applied Materials Today, 19, (2020) [62] MIRBOZORGI, S. A., NIAZMAND, H., and RENKSIZBULUT, M. Electro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential. Journal of Fluids Engineering, 128, 1133-1143(2006) [63] PAL, D. and CHAKRABORTY, S. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Electrophoresis, 32(5), 638-645, (2011) [64] LI, M., LI, W. H., ZHANG, J., ALICI, G., and WEN, W. J. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. Journal of Physics D: Applied Physics, 47, 063001(2014) [65] SRIVASTAVA, S. K., BAYLONCARDIEL, J. L., LAPIZCOENCINAS, B. H., and MINERICK, A., R. A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A, 1218, 1780-1789(2011) [66] BARMAN, U., SEN, A. K., and MISHRA, S. C. Theoretical and numerical investigations of an electroosmotic flow micropump with interdigitated electrodes. Microsystem Technologies, 20, 157-168(2014) |