[1] YANG, B., GAO, X., and LI, C. A novel micromachined Z-axis torsional accelerometer based on the tunneling magnetoresistive effect. Micromachines, 11(4), 422(2020) [2] BUTLER, M. C., NORTON, V. A., and WEITEKAMP, D. P. Nanoscale torsional resonator for polarization and spectroscopy of nuclear spins. Physical Review Letters, 105(17), 177601(2010) [3] GUO, J. G. and ZHAO, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43(3/4), 675-685(2006) [4] LI, H. and CHEN, Z. B. Torsional sensors for conical shell in torsional vibrations. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 224(C11), 2382-2389(2010) [5] ANTONIO, D., DOLZ, M. I., and PASTORIZA, H. Micromechanical magnetometer using an all-silicon nonlinear torsional resonator. Applied Physics Letters, 95(13), 133505(2009) [6] VENKATESH, C., BHAT, N., VINOY, K. J., and GRANDHI, S. Microelectromechanical torsional varactors with low parasitic capacitances and high dynamic range. Journal of MicroNanolithography MEMS and MOEMS, 11(1), 013006(2012) [7] LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477- 1508(2003) [8] CHEN, Y., DORGAN, B. L., JR, MCILROY, D. N., and ASTON, D. E. On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Journal of Applied Physics, 100, 104301(2006) [9] MOTZ, C., WEYGAND, D., SENGER, J., and GUMBSCH, P. Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Materialia, 56(9), 1942-1955(2008) [10] MOHAMMADIMEHR, M., FARAHI, M. J., and ALIMIRZAEI, S. Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory. Applied Mathematics and Mechanics (English Edition), 37(10), 1375-1392(2016) https://doi.org/10.1007/s10483-016-2138-9 [11] RAVI, R., KANCHANA, C., and SIDDHESHWAR, P. G. Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids. Applied Mathematics and Mechanics (English Edition), 38(11), 1579-1600(2017) https://doi.org/10.1007/s10483-017-2280-9 [12] ZHANG, B., SHEN, H., LIU, J., WANG, Y., and ZHANG, Y. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Applied Mathematics and Mechanics (English Edition), 40(4), 515-548(2019) https://doi.org/10.1007/s10483-019- 2482-9 [13] WANG, J., ZHU, Y., ZHANG, B., SHEN, H., and LIU, J. Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Applied Mathematics and Mechanics (English Edition), 41(2), 261-278(2020) https://doi.org/10.1007/s10483-020-2565-5 [14] TSIATAS, G. C. and KATSIKADELIS, J. T. A new microstructure-dependent Saint-Venant torsion model based on a modified couple stress theory. European Journal of Mechanics A-Solids, 30(5), 741-747(2011) [15] YAYLI, M. O. Torsional vibrations of restrained nanotubes using modified couple stress theory. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 24(8), 3425-3435(2018) [16] SETOODEH, A. R., REZAEI, M., and SHAHRI, M. R. Z. Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 37(6), 725-740(2016) https://doi.org/10.1007/s10483-016-2085-6 [17] BARATI, A., ADELI, M. M., and HADI, A. Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field. International Journal of Applied Mechanics, 12(2), 2050021(2020) [18] KAHROBAIYAN, M. H., TAJALLI, S. A., MOVAHHEDY, M. R., AKBARI, J., and AHMADIAN, M. T. Torsion of strain gradient bars. International Journal of Engineering Science, 49(9), 856-866(2011) [19] BEHESHTI, A. A numerical analysis of Saint-Venant torsion in strain-gradient bars. European Journal of Mechanics A-Solids, 70, 181-190(2018) [20] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710(1983) [21] FARAJI-OSKOUIE, M., NOROUZZADEH, A., ANSARI, R., and ROUHI, H. Bending of smallscale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Applied Mathematics and Mechanics (English Edition), 40(6), 767-782(2019) https://doi.org/10.1007/s10483-019-2491-9 [22] LU, L., ZHU, L., GUO, X., ZHAO, J., and LIU, G. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(12), 1695-1722(2019) https://doi.org/10.1007/s10483-019-2549-7 [23] JIANG, P., QING, H., and GAO, C. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Applied Mathematics and Mechanics (English Edition), 41(2), 207-232(2020) https://doi.org/10.1007/s10483-020-2569-6 [24] ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859-880(2020) https://doi.org/10.1007/s10483-020-2620-8 [25] NARENDAR, S. Spectral finite element and nonlocal continuum mechanics based formulation for torsional propagation in nanorods. Finite Elements in Analysis and Design, 62, 65-75(2012) [26] YAYLI, M. O. Torsion of nonlocal bars with equilateral triangle cross sections. Journal of Computational and Theoretical Nanoscience, 10(2), 376-379(2013) [27] ISLAM, Z. M., JIA, P., and LIM, C. W. torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory. International Journal of Applied Mechanics, 6(2), 1450011(2014) [28] LIM, C. W., ISLAM, M. Z., and ZHANG, G. A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. International Journal of Mechanical Sciences, 94-95, 232-243(2015) [29] ARDA, M. and AYDOGDU, M. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Applied Physics A-Materials Science and Processing, 122(3), 219(2016) [30] AYDOGDU, M. and ARDA, M. Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. International Journal of Mechanics and Materials in Design, 12(1), 71-84(2016) [31] FEO, L. and PENNA, R. A note on torsion of nonlocal composite nanobeams. Modelling and Simulation in Engineering, 2016, 5934814(2016) [32] NUMANOGLU, H. M. and CIVALEK, O. On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. International Journal of Mechanical Sciences, 161, 105076(2019) [33] ROMANO, G., BARRETTA, R., DIACO, M., and DE SCIARRA, F. M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151-156(2017) [34] BENVENUTI, E. and SIMONE, A. One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mechanics Research Communications, 48, 46-51(2013) [35] ZHANG, P., QING, H., and GAO, C. Theoretical analysis for static bending of circular EulerBernoulli beam using local and Eringen’s nonlocal integral mixed model. Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800329(2019) [36] ZHANG, P., QING, H., and GAO, C. Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. Zeitschrift für Angewandte Mathematik und Mechanik, 100(7), e201900207(2020) [37] REDDY, J. N. and PANG, S. D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103(2), 023511(2008) [38] LIM, C. W., LI, C., and YU, J. L. Free torsional vibration of nanotubes based on nonlocal stress theory. Journal of Sound and Vibration, 331(12), 2798-2808(2012) [39] LI, C. A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Composite Structures, 118, 607-621(2014) [40] ADELI, M. M., HADI, A., HOSSEINI, M., and GORGANI, H. H. Torsional vibration of nanocone based on nonlocal strain gradient elasticity theory. European Physical Journal Plus, 132(9), 393(2017) [41] APUZZO, A., BARRETTA, R., CANADIJA, M., FEO, L., LUCIANO, R., and DE SCIARRA, F. M. A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Composites Part B-Engineering, 108, 315-324(2017) [42] BARRETTA, R., DIACO, M., FEO, L., LUCIANO, R., DE SCIARRA, F. M., and PENNA, R. Stress-driven integral elastic theory for torsion of nano-beams. Mechanics Research Communications, 87, 35-41(2018) [43] ZHU, X. and LI, L. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences, 133, 639-650(2017) [44] BARRETTA, R., FAGHIDIAN, S. A., DE SCIARRA, F. M., PENNA, R., and PINNOLA, F. P. On torsion of nonlocal Lam strain gradient FG elastic beams. Composite Structures, 233, 111550(2020) [45] NOROOZI, R., BARATI, A., KAZEMI, A., NOROUZI, S., and HADI, A. Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity. Advances in Nano Research, 8(1), 13-24(2020) [46] ROMANO, G. and BARRETTA, R. Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science, 115, 14-27(2017) [47] LAZAR, M., MAUGIN, G. A., and AIFANTIS, E. C. On a theory of nonlocal elasticity of biHelmholtz type and some applications. International Journal of Solids and Structures, 43(6), 1404-1421(2006) [48] BIAN, P. B., QING, H., and GAO, C. F. One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: close form solution and consistent size effect. Applied Mathematical Modelling, 89, 400-412(2021) [49] QING, H. Automatic generation of 2D micromechanical finite element model of siliconcarbide/aluminum metal matrix composites: effects of the boundary conditions. Materials and Design, 44, 446-453(2013) [50] SIMSEK, M. and REDDY, J. N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Composite Structures, 101, 47-58(2013) |