[1] DUAN, G. R. and HUANG, L. Robust pole assignment in descriptor second-order dynamical systems. Acta Automatica Sinica, 33(8), 888-892(2007) [2] LOSSE, P. and MEHRMANN, V. Controllability and observability of second order descriptor systems. SIAM Journal of Control and Optimization, 47(3), 1351-1379(2008) [3] CAMPBELL, S. L. and ROSE, N. J. A second order singular linear system arising in electric power systems analysis. International Journal of Systems Science, 13(1), 101-108(1982) [4] DUNOMT, Y., GOELEVEN, D., and ROCHDI, M. Reduction of second order unilateral singular systems. Applications in mechanics. ZAMM-Journal of Applied Mathematics and Mechanics, 81(4), 219-245(2001) [5] KAWANO, D. T., MORZFELD, M., and MA, F. The decoupling of second-order linear systems with a singular mass matrix. Journal of Sound and Vibration, 332, 6829-6846(2013) [6] DUAN, G. R. Analysis and Design of Descriptor Linear Systems, Springer Science and Business Media, New York, 265-303(2010) [7] DUAN, G. R. Parametric eigenstructure assignment in second-order descriptor linear systems. IEEE Transactions on Automatic Control, 49(10), 1789-1794(2004) [8] YU, P. G. and ZHANG, G. S. Eigenstructure assignment and impulse elimination for singular second-order system via feedback control. IET Control Theory and Applications, 10(8), 869-876(2016) [9] ABDELAZIZ, T. H. S. Robust pole assignment using velocity-acceleration feedback for secondorder dynamical systems with singular mass matrix. ISA Transactions, 57, 71-84(2015) [10] ZHANG, L. P., ZHANG, G. S., and LIU, W. Q. Optimal control of second-order and high-order descriptor systems. Optimal Control Applications and Methods, 40, 791-806(2019) [11] ABDELAZIZ, T. H. S. Robust solution for second-order systems using displacement-acceleration feedback. Journal of Control, Automation and Electrical Systems, 30, 632-644(2019) [12] MEYER, D. G. and SRINIVASAN, S. Balancing and model reduction for second-order form linear systems. IEEE Transactions on Automatic Control, 41(11), 1632-1644(1996) [13] BENNER, P., MEHRMANN, V., and SORENSEN, D. C. Dimension Reduction of Large-Scale Systems, Springer-Verlag, Berlin/Heidelberg, Germany, 173-223(2005) [14] CHAHLAOUI, Y., LEMONNIER, D., VANDENDORPE, A., and VAN DOOREN, P. Secondorder balanced truncation. Linear Algebra and Its Applications, 415, 373-384(2006) [15] BENNER, P. and WERNER, S. W. R. Frequency- and time-limited balanced truncation for large-scale second-order systems. Linear Algebra and Its Applications (2020) https://doi.org/10.1016/j.laa.2020.06.024 [16] BAI, Z. J. and SU, Y. F. Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM Journal on Scientific Computing, 26(5), 1692-1709(2005) [17] BAI, Z. J. and SU, Y. F. SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 26(3), 640-659(2005) [18] LIN, Y. Q., BAO, L., and WEI, Y. M. Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method. International Journal of Computer Mathematics, 84(7), 1003-1019(2007) [19] XIAO, Z. H., JIANG, Y. L., and QI, Z. Z. Structure preserving balanced proper orthogonal decomposition for second-order form systems via shifted Legendre polynomials. IET Control Theory and Applications, 13(8), 1155-1165(2019) [20] SCHULZE, P., UNGER, B., BEATTIE, C., and GUGERCIN, S. Data-driven structured realization. Linear Algebra and Its Applications, 537, 250-286(2018) [21] LANCASTER, P. and TISMENETSKY, M. The Theory of Matrices with Applications, 2nd ed., Academic Press, Orlando, 350-382(1985) [22] BROWN, J. W. and CHURCHILL, R. V. Complex Variables and Applications, 9nd ed., McGrawHill Education, New York, 259-297(2014) [23] HU, X. L., CONG, Y. H., and HU, G. D. Delay-dependent stability of Runge-Kutta methods for linear delay differential-algebraic equations. Journal of Computational and Applied Mathematics, 363, 300-311(2020) |