[1] WALSER, R. M. Metamaterials:what are they? what are they good for? APS March Meeting, American Physical Society, Ridge (2000) [2] LU, L., RU, C. Q., and GUO, X. M. Negative effective mass of a filled carbon nanotube. International Journal of Mechanical Sciences, 134, 174-181(2017) [3] WU, B., GUO, X. M., and RU, C. Q. Reduced vibrational frequencies of multiwall carbon nanotubes due to interlayer degrees of freedom. European Journal of Mechanics-A/Solids, 47, 206-210(2014) [4] HU, Z. L., GUO, X. M., and RU, C. Q. Enhanced critical pressure for buckling of carbon nanotubes due to an inserted linear carbon chain. Nanotechnology, 19(30), 305703(2008) [5] HU, Z. L., GUO, X. M., and RU, C. Q. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube. Nanotechnology, 18(48), 485712(2007) [6] VESELAGO, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10(4), 509-514(1968) [7] CRASTER, R. V. and GUENNEAU, S. Acoustic Metamaterials:Negative Refraction, Imaging, Lensing and Cloaking, Springer, the Netherlands (2013) [8] LI, Y., LIANG, B., GU, Z. M., ZOU, X. Y., and CHENG, J. C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports, 3, 2546(2013) [9] LI, Y., JIANG, X., LI, R. Q., LIANG, B., ZOU, X. Y., YIN, L. L., and CHENG, J. C. Experimental realizations of full control of reflected waves with subwavelength acoustic metasurfaces. Physical Review Applied, 2(6), 064002(2014) [10] ZHU, Y. F., ZOU, X. Y., LI, R. Q., JIANG, X., TU, J., LIANG, B., and CHENG, J. C. Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Scientific Reports, 5, 10966(2015) [11] ZHAO, J. J., LI, B. W., CHEN, Z. N., and QIU, C. W. Redirection of sound waves using acoustic metasurface. Applied Physics Letters, 103(15), 151604(2013) [12] SHELBY, R. A., SMITH, D. R., and SCHULTZ, S. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001) [13] XIE, Y. B., WANG, W. Q., CHEN, H. Y., KONNEKER, A., POPA, B. I., and CUMMER, S. A. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5, 5553(2014) [14] LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289, 1734-1736(2000) [15] HUSSEIN, M. I., HULBERT, G. M., and SCOTT, R. A. Dispersive elastodynamics of 1D banded materials and structures:design. Journal of Sound and Vibration, 307, 865-893(2007) [16] KHELIF, A., CHOUJAA, A., and BENCHABANE, S. Guiding and bending of acoustic waves in highly confined photonic crystal waveguides. Applied Physics Letters, 84(22), 4400-4402(2004) [17] LUCKLUM, R. and LI, J. Phononic crystals for liquid sensor applications. Measurement Science & Technology, 20(12), 124014(2009) [18] LU, L., RU, C. Q., and GUO, X. M. Vibration isolation of few-layer graphene sheets. International Journal of Solids and Structures, 185-186, 78-88(2020) [19] MILTON, G. W. and WILLIS, J. R. On modifications of Newton's second law and linear continuum elastodynamics. Proceedings of the Royal Society A, 463, 855-880(2007) [20] CUMMER, S. A., CHRISTENSEN, J., and ALÙ, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3), 16001(2016) [21] AN, X. Y., LAI, C. L., FAN, H. L., and ZHANG, C. Z. 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation. International Journal of Solids and Structures, 191, 293-306(2020) [22] ZHANG, Y. Y., GAO, N. S., and WU, J. H. New mechanism of tunable broadband in local resonance structures. Applied Acoustics, 169, 107482(2020) [23] HU, X. H., HO, K. M., CHAN, C. T., and ZI, J. Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Physical Review, 77, 21-24(2008) [24] STARKEY, T. A., SMITH, J. D., HIBBINS, A. P., SAMBLES, J. R., and RANEE, H. J. Thin structured rigid body for acoustic absorption. Applied Physics Letters, 110, 041902(2017) [25] CLIMENTE, A., TORRENT, D., and SÁNCHEZ-DEHESA, J. Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100, 144103(2012) [26] ZHU, R., CHEN, Y. Y., BARNHART, M. V., HU, G. K., SUN, C. T., and HUANG, G. L. Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Applied Physics Letters, 108, 1734-1736(2016) [27] SHIGA, T., OKADA, A., and KURAUCHI, T. Magnetroviscoelastic behavior of composite gels. Journal of Applied Polymer Science, 58(4), 787-792(1995) [28] YOON, J. Y., HONG, S. W., PARK, Y. J., KIM, S. H., KIM, G. W., and CHOI, S. B. Tunable Young's moduli of soft composites fabricated from magnetorheological materials containing microsized iron particles. Materials, 13, 3378(2020) [29] CHEN, H. J., ZHAO, W. X., and HAO, C. C. Tunable broadband sound absorbing metamaterial with negative modulus. Chinese Journal of Liquid Crystals and Displays, 30, 234-239(2015) [30] ZHANG, S., ZHOU, J. F., PARK, Y. S., RHO, J., SINGH, R., NAM, S., AZAD, A. K., CHEN, H. T., YIN, X. B., TAYLOR, A. J., and ZHANG, X. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 3, 942-949(2012) [31] CHEN, Z., XUE, C., FAN, L., ZHANG, S. Y., LI, X. J., ZHANG, H., and DING, J. A tunable acoustic metamaterial with double-negativity driven by electromagnets. Scientific Reports, 6, 30254(2016) [32] MA, G., FAN, X., SHENG, P., and FINK, M. Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences, 115, 6638-6643(2018) [33] WANG, X. J., GUO, X. G., YE, J. L., ZHENG, N., KOHLI, P., CHOI, D., ZHANG, Y., XIE, Z. Q., ZHANG, Q. H., LUAN, H. W., NAN, K. W., KIM, B. H., XU, Y. M., SHAN, X. W., BAI, W. B., SUN, R. J., WANG, Z. Z., JANG, H., ZHANG, F., MA, Y. J., XU, Z., FENG, X., XIE, T., HUANG, Y. G., ZHANG, Y. H., and ROGERS, J. A. Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Advanced Materials, 31, 1805615(2019) [34] LIU, Y. Q., SU, X. Y., and SUN, C. T. Broadband elastic metamaterial with single negativity by mimicking lattice systems. Journal of the Mechanics and Physics of Solids, 74, 158-174(2015) [35] YI, J. L., NEGAHBAN, M., LI, Z., SU, X. Y., and XIA, R. Y. Conditionally extraordinary transmission in periodic parity-time symmetric phononic crystals. International Journal of Mechanical Sciences, 163, 105134(2019) |