[1] GEMANT, A. A method of analyzing experimental results obtained from elastoviscous bodies. Physics, 7, 311-317(1936) [2] SCHIESSEL, H., METZLER, R., BLUMEN, A., and NONNENMACHER, T. F. Generalized viscoelastic models:their fractional equations with solutions. Journal of Physics A:Mathematical and General, 28, 6567-6584(1995) [3] HILFER, R. Applications of Fractional Calculus in Physics, World Scientific Press, Singapore (2000) [4] MERAL, F. C., ROYSTON, T. J., and MAGIN, R. Fractional calculus in viscoelasticity:an experimental study. Communications in Nonlinear Science and Numerical Simulation, 15(4), 939-945(2010) [5] MAINARDI, F. Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010) [6] BAGLEY, R. L. and TORVIK, P. J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27(3), 201-210(1983) [7] SCOTT-BLAIR, G. W. Survey of General and Applied Rheology, Pitman Press, London (1949) [8] FRIEDRICH, C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheologica Acta, 30, 151-158(1991) [9] TAN, W., PAN, W., and XU, M. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. International Journal of Non-Linear Mechanics, 38, 645-650(2003) [10] YIN, Y. B. and ZHU, K. Q. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Applied Mathematics and Computation, 173(1), 231-242(2006) [11] ZHANG, Y., ZHAO, H. J., LIU, F. W., and BAI, Y. Analytical and numerical solutions of the unsteady 2D flow of MHD fractional Maxwell fluid induced by variable pressure gradient. Computers and Mathematics with Applications, 75, 965-980(2018) [12] WANG, X. P., XU, H. Y., and QI, H. T. Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids. Applied Mathematics Letters, 103, 106179(2020) [13] SUN, H. G., ZHANG, Y., WEI, S., ZHU, J. T., and CHEN, W. A space fractional constitutive equation model for non-Newtonian fluid flow. Communications in Nonlinear Science and Numerical Simulation, 62, 409-417(2018) [14] WANG, X. P., XU, H. Y., and QI, H. T. Transient magnetohydrodynamic flow and heat transfer of fractional Oldroyd-B fluids in a microchannel with slip boundary condition. Physics of Fluids, 32(10), 103104(2020) [15] JIANG, X. Y., ZHANG, H., and WANG, S. W. Unsteady magnetohydrodynamic flow of generalized second grade fluid through porous medium with Hall effects on heat and mass transfer. Physics of Fluids, 32(11), 113105(2020) [16] CAO, L. M., ZHANG, P. P., LI, B. T., ZHU, J., and SI, X. H. Numerical study of rotating electro-osmotic flow of double layers with a layer of fractional second-order fluid in a microchannel. Applied Mathematics Letters, 111, 106633(2021) [17] YANG, D. and ZHU, K. Q. Start-up flow of a viscoelastic fluid in a pipe with a fractional Maxwell's model. Computers and Mathematics with Applications, 60, 2231-2238(2010) [18] WANG, S. W. and ZHAO, M. L. Analytical solution of the transient electro-osmotic flow of a generalized fractional Maxwell fluid in a straight pipe with a circular cross-section. European Journal of Mechanics B-Fluids, 54, 82-86(2015) [19] GLÖCKLE, W. G. and NONNENMACHER, T. F. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 68, 46-53(1995) [20] LIU, L., ZHENG, L. C., LIU, F. W., and ZHANG, X. X. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux. Communications in Nonlinear Science and Numerical Simulation, 38, 45-58(2016) [21] FENG, L. B., TURNER, I., PERRE, P., and BURRAGE, K. An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media. Communications in Nonlinear Science and Numerical Simulation, 92, 105454(2021) [22] PATNAIK, S., HOLLKAMP, J. P., and SEMPERLOTTI, F. Applications of variable-order fractional operators:a review. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 476, 20190498(2020) [23] PATNAIK, S. and SEMPERLOTTI, F. Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dynamics, 100(3), 561-580(2020) [24] WEI, D., PATNAIK, S., SIDHARDH, S., and SEMPERLOTTI, F. Applications of distributed-order fractional operators:a review. Entropy, 23(1), 110(2021) [25] CHEN, C. M., LIU, F., TURNER, I., ANH, V., and CHEN, Y. Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation. Numerical Algorithms, 63(2), 265-290(2013) [26] LIU, L., FENG, L. B., XU, Q., ZHENG, L. C., and LIU, F. W. Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models. International Communications in Heat and Mass Transfer, 116, 104679(2020) [27] YANG, W. D., CHEN, X. H., ZHANG, X. R., ZHENG, L. C., and LIU, F. W. Flow and heat transfer of viscoelastic fluid with a novel space distributed-order constitution relationship. Computers and Mathematics with Applications, 94, 94-103(2021) [28] LYU, S. J., XU, T., and FENG, Z. S. A second-order numerical method for space-time variable-order diffusion equation. Journal of Computational and Applied Mathematics, 389, 113358(2021) [29] MOOSAVI, R., MOLTAFET, R., and SHEKARI, Y. Analysis of viscoelastic non-Newtonian fluid over a vertical forward-facing step using the Maxwell fractional model. Applied Mathematics and Computation, 401, 126119(2021) [30] CHEN, Y. L., ZHANG, X. Q., REN, L. X., GENG, Y. Y., and BAI, G. Q. Analysis of blood flow characteristics in fractal vascular network based on the time fractional order. Physics of Fluids, 33(4), 041902(2021) [31] PODLUBNY, I. Fractional Differential Equations, Academic Press, San Diego (1999) [32] YE, H., LIU, F., ANH, V., and TURNER, I. Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA Journal of Applied Mathematics, 80(3), 825-838(2015) [33] SHEN, S., LIU, F., CHEN, J., TURNER, I., and ANH, V. Numerical techniques for the variable order time fractional diffusion equation. Applied Mathematics and Computation, 218(22), 10861-10870(2012) [34] SUN, Z. Z. and WU, X. N. A fully discrete difference scheme for a diffusion-wave system. Applied Numerical Mathematics, 56(2), 193-209(2006) [35] CHEN, J., LIU, F., ANH, V., SHEN, S., LIU, Q., and LIAO, C. The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Applied Mathematics and Computation, 219(4), 1737-1748(2012) [36] DIETHELM, K. and FORD, N. J. Numerical analysis for distributed-order differential equations. Journal of Computational and Applied Mathematics, 225(1), 96-104(2009) [37] HU, X. L., LIU, F., TURNER, I., and ANH, V. An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation. Numerical Algorithms, 72(2), 393-407(2016) [38] SANDEV, T. and TOMOVSKI, Ž. Fractional Equations and Models:Theory and Applications, Springer, Switzerland (2019) |