[1] FRIEDMANN, P. P. Rotary-wing aeroelasticity:current status and future trends. AIAA Journal, 42, 1953-1972(2004) [2] ZHANG, P. and HUANG, S. Review of aeroelasticity for wind turbine:current status, research focus and future perspectives. Frontiers in Energy, 5, 419-434(2011) [3] ZHU, T. L. The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh-Ritz method. Computational Mechanics, 47, 395-408(2011) [4] RAFIEE, M., NITZSCHE, F., and LABROSSE, M. Dynamics, vibration and control of rotating composite beams and blades:a critical review. Thin-Walled Structures, 119, 795-819(2017) [5] ADAIR, D. and JAEGER, M. A power series solution for rotating nonuniform Euler-Bernoulli cantilever beams. Journal of Vibration and Control, 24, 3855-3864(2018) [6] LIU, G. Z., GUO, X. M., and ZHU, L. Dynamic analysis of wind turbine tower structures in complex ocean environment. Applied Mathematics and Mechanics (English Edition), 41(7), 999-1010(2020) https://doi.org/10.1007/s10483-020-2624-8 [7] RONG, Y. F., SUN, Q., and LIANG, K. Modified unified co-rotational framework with beam, shell and brick elements for geometrically nonlinear analysis. Acta Mechanica Sinica (2021) [8] GUO, H. L., OUYANG, X., ZUR, K. K., and WU, X. T. Meshless numerical approach to flutter analysis of rotating pre-twisted nanocomposite blades subjected to supersonic airflow. Engineering Analysis with Boundary Elements, 132, 1-11(2021) [9] MENG, H., JIN, D. Y., LI, L., and LIU, Y. Q. Analytical and numerical study on centrifugal stiffening effect for large rotating wind turbine blade based on NREL 5 MW and WindPACT 1.5 MW models. Renewable Energy, 183, 321-329(2022) [10] YOO, H. H., RYAN, R. R., and SCOTT, R. A. Dynamics of flexible beams undergoing overall motions. Journal of Sound and Vibration, 181, 261-278(1995) [11] YOO, H. H. and SHIN, S. H. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 212, 807-828(1998) [12] CHUANG, J. and YOO, H. H. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and Vibration, 249, 147-164(2002) [13] BANERJEE, J. R. and SOBEY, A. J. Energy expressions for rotating tapered Timoshenko beams. Journal of Sound and Vibration, 254, 818-822(2002) [14] BANERJEE, J. R. and KENNEDY, D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. Journal of Sound and Vibration, 333, 7299-7312(2014) [15] BANERJEE, J. R. and JACKSON, D. R. Free vibration of a rotating tapered Rayleigh beam:a dynamic stiffness method of solution. Computers and Structure, 124, 11-20(2013) [16] YANG, X. D., LI, Z., ZHANG, W., YANG, T. Z., and LIM, C. W. On the gyroscopic and centrifugal effects in the free vibration of rotating beams. Journal of Vibration and Control, 25, 219-227(2019) [17] YANG, X. D., WANG, S. W., ZHANG, W., YANG, T. Z., and LIM, C. W. Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. European Journal of Mechanics-A/Solids, 72, 209-222(2018) [18] LIM, I. and LEE, I. Aeroelastic analysis of bearingless rotors with a composite flexbeam. Composite Structures, 88, 570-578(2009) [19] CULP, J. D. and MURTHY, V. R. Free vibration analysis of branched blades by the integrating matrix method. Journal of Sound and Vibration, 155, 303-315(1992) [20] HODGES, D. H. A theoretical technique for analyzing aeroelastic stability of bearingless rotors. AIAA Journal, 17, 400-407(1979) [21] LIN, B. C., QIN, Y., LI, Y. H., and YANG, J. The deflection of rotating composite tapered beams with an elastically restrained root in hygrothermal environment. Zeitschrift für Naturforschung A, 74, 849-859(2019) [22] LIN, S. PD control of a rotating smart beam with an elastic root. Journal of Sound and Vibration, 312, 109-124(2008) [23] CHEN, Q. and DU, J. A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports. Applied Acoustics, 155, 1-15(2019) [24] ZENG, J., MA, H., YU, K., XU, Z. T., and WEN, B. C. Coupled flapwise-chordwise-axialtorsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. Applied Mathematics and Mechanics (English Edition), 40(8), 1053-1082(2019) https://doi.org/10.1007/s10483-019-2506-6 [25] HODGES, D. H. and ORMISTON, R. A. Stability of elastic bending and torsion of uniform cantilevered rotor blades in hover. 14th Structures, Structural Dynamics, and Materials Conference, AIAA, Williamsburg (1974) [26] HANSEN, M. H. Aeroelastic instability problems for wind turbines. Wind Energy, 10, 551-577(2007) [27] LEE, J., YEE, K., YOO, S. J., LEE, I., SHIN, S. J., and KIM, D. K. Aeroelastic analysis of a hingeless rotor using a dynamic wake model. Journal of Aircraft, 48, 1817-1822(2011) [28] WANG, D., CHEN, Y., WIERCIGROCH, M., and CAO, Q. J. Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Applied Mathematics and Mechanics (English Edition), 37(9), 1251-1274(2016) https://doi.org/10.1007/s10483-016-2128-6 [29] SICARD, J. and SIROHI, J. Aeroelastic stability of a flexible ribbon rotor blade. Journal of Fluids and Structures, 67, 106-123(2016) [30] AMOOZGAR, M. R., SHAHVERDI, H., and NOBARI, A. S. Aeroelastic stability of hingeless rotor blades in hover using fully intrinsic equations. AIAA Journal, 55, 2450-2460(2017) [31] SAYED, M., KLEIN, L., LUTZ, T., and KRAMER, E. Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow. Renewable Energy, 140, 304-318(2019) [32] MA, L., YAO, M. H., ZHANG, W., and CAO, D. X. Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow. Applied Mathematics and Mechanics (English Edition), 41(12), 1861-1880(2020) https://doi.org/10.1007/s10483-020-2668-8 [33] SABALE, A. K. and GOPAL, N. K. V. Nonlinear aeroelastic analysis of large wind turbines under turbulent wind conditions. AIAA Journal, 57, 4416-4432(2019) [34] WANG, S. W., HAN, J. L., CHEN, Q. L., YUN, H. W., and CHEN, X. M. New method for analyzing the flutter stability of hingeless blades with advanced geometric configureurations in hovering. International Journal of Aerospace Engineering, 2020, 1-16(2020) [35] REN, J., HUANG, H., WANG, D. X., DONG, X., and CAO, B. C. An efficient coupled-mode flutter analysis method for turbomachinery. Aerospace Science and Technology, 106, 106215(2020) [36] LI, W. L. Free vibrations of beams with general boundary conditions. Journal of Sound and Vibration, 237, 709-725(2000) [37] JIN, G. Y., SU, Z., SHI, S. X., YE, T. G., and GAO, S. Y. Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions. Composite Structures, 108, 565-577(2014) [38] SU, Z., JIN, G. Y., SHI, S. X., YE, T. G., and JIA, X. Z. A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions. International Journal of Mechanical Sciences, 80, 62-80(2014) [39] WANG, Q. S., SHI, D. Y., LIANG, Q., and SHI, X. J. A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions. Composites Part B:Engineering, 88, 264-294(2016) [40] ZHONG, R., WANG, Q. S., TANG, J. Y., SHUAI, C. J., and QIN, B. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Composites Part B:Engineering, 194, 49-67(2018) [41] YANG, X. D., WANG, S. W., ZHANG, W., QIN, Z. H., and YANG, T. Z. Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method. Applied Mathematics and Mechanics (English Edition), 38(10), 1425-1438(2017) https://doi.org/10.1007/s10483-017-2249-6 [42] GREENBERG, J. M. Airfoil in sinusoidal motion in a pulsating stream. National Advisory Committee for Aeronautics, Technical Notes, No. 1326(1947) [43] HODGES, D. H. and RUTKOWSKI, M. J. Free-vibration analysis of rotating beams by a variableorder finite-element method. AIAA Journal, 19, 1459-1466(1981) [44] DU, H., LIM, M. K., and LIEW, K. M. A power series solution for vibration of a rotating Timoshenko beam. Journal of Sound and Vibration, 175, 505-523(1994) |