[1] ROPER, D. K., AHN, W., and HOEPFNER, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. Journal of Physical Chemistry C, 111, 3636-3641(2007) [2] TRP, A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy, 79, 648-660(2005) [3] HSIAO, T. K., HUANG, B. W., CHANG, H. K., LIOU, S. C., CHU, M. W., LEE, S. C., and CHANG, C. W. Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Physical Review B, 91, 035406(2015) [4] BRUCH, J. C., JR. and ZYVOLOSKI, G. Transient two-dimensional heat conduction problems solved by the finite element method. International Journal for Numerical Methods in Engineering, 8, 481-494(1974) [5] YU, B., HU, P. M., SAPUTRA, A. A., and GU, Y. The scaled boundary finite element method based on the hybrid quadtree mesh for solving transient heat conduction problems. Applied Mathematical Modelling, 89, 541-571(2021) [6] WANG, B. B., GAO, X., and DUAN, Q. L. Quadratically consistent meshfree methods for heat conduction in steady state (in Chinese). Applied Mathematics and Mechanics, 34, 750-755(2013) [7] GU, Y., HUA, Q. S., ZHANG, C. Z., and HE, X. Q. The generalized finite difference method for long-time transient heat conduction in 3D anisotropic composite materials. Applied Mathematical Modelling, 71, 316-330(2019) [8] SIDOROV, V. N. and MATSKEVICH, S. M. Discrete-analytical solution of the unsteady-state heat conduction transfer problem based on the finite element method. International Conference on Information and Digital Technologies, IEEE, Rzeszow (2016) [9] RESENDIZ-FLORES, E. O. and GARCIA-CALVILLO, I. D. Application of the finite pointset method to non-stationary heat conduction problems. International Journal of Heat and Mass Transfer, 71, 720-723(2014) [10] STUMP, B. and PLOTKOWSKI, A. An adaptive integration scheme for heat conduction in additive manufacturing. Applied Mathematical Modelling, 75, 787-805(2019) [11] LIN, G., LI, P., LIU, J., and ZHANG, P. C. Transient heat conduction analysis using the NURBSenhanced scaled boundary finite element method and modified precise integration method. Acta Mechanica Solida Sinica, 30, 445-464(2017) [12] DICHAMP, J., DE GOURNAY, F., and PLOURABOUE, F. Thermal significance and optimal transfer in vessels bundles is influenced by vascular density. International Journal of Heat and Mass Transfer, 138, 1-10(2019) [13] LI, C. Y., FANG, Y. K., LIU, F. X., and RUAN, Y. H. A thermal protective clothing-air-skin heat conduction model and its analytical solution (in Chinese). Applied Mathematics and Mechanics, 42, 162-169(2021) [14] XU, G. Y., WANG, J. B., and HAN, Z. Study on the transient temperature field based on the fractional heat conduction equation for laser heating (in Chinese). Applied Mathematics and Mechanics, 36, 844-854(2016) [15] REZANIA, A., GHORBALI, A., DOMAIRRY, G., and BARARNIA, H. Consideration of transient heat conduction in a semi-infinite medium using homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 29(12), 1479-1485(2008) https://doi.org/10.1007/s10483-008-1210-3 [16] KARTASHOV, E. M. Mathematical models of heat conduction with a two-phase lag. Journal of Engineering Physics and Thermophysics, 89, 346-356(2016) [17] MA, J. X., YANG, X. F., LIU, S. B., SUN, Y. X., and YANG, J. L. Exact solution of thermal response in a three-dimensional living bio-tissue subjected to a scanning laser beam. International Journal of Heat and Mass Transfer, 124, 1107-1116(2018) [18] ZHENG, X. R., SUN, Y., HUANG, M. Q., AN, D. Q., LI, P., WANG, B., and LI, R. Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels. International Journal of Mechanical Sciences, 152, 432-442(2019) [19] LI, R., ZHENG, X. R., WANG, H. Y., XIONG, S. J., YAN, K., and LI, P. New analytic buckling solutions of rectangular thin plates with all edges free. International Journal of Mechanical Sciences, 144, 67-73(2018) [20] LI, R., WANG, P. C., YANG, Z. K., YANG, J. Q., and TONG, L. H. On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space. Applied Mathematical Modelling, 53, 310-318(2018) [21] LI, R., LI, M., SU, Y. W., SONG, J. Z., and NI, X. Q. An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter, 9, 8476-8482(2013) [22] YAO, W. A., ZHONG, W. X., and LIM, C. W. Symplectic Elasticity, World Scientific, Singapore (2009) [23] FOURIER, J. B. J. The Analytical Theory of Heat, The University Press, Michigan (1878) [24] HONIG, G. and HIRDES, U. A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics, 10, 113-132(1984) [25] XU, C. H., RONG, D. L., ZHOU, Z. H., and XU, X. S. A novel Hamiltonian-based method for two-dimensional transient heat conduction in a rectangle with specific mixed boundary conditions. Journal of Thermal Science and Technology, 12, 17-265(2017) [26] YANG, C. T. and SONG, C. C. S. Theory of minimum rate of energy-dissipation. American Society of Civil Engineers, 105, 769-784(1979) [27] WANG, B., LI, P., and LI, R. Symplectic superposition method for new analytic buckling solutions of rectangular thin plates. International Journal of Mechanical Sciences, 119, 432-441(2016) |