[1] MARTIN, P. S., ROBERT, L., and KLAVS, F. J. Intracellular delivery by membrane disruption:mechanisms, strategies, and concepts. Chemical Reviews, 118(16), 7409-7531(2018) [2] STEWART, M. P., SHAREI, A., DING, X., SAHAY, G., LANGER, R., and JENSEN, K. F. In vitro and ex vivo strategies for intracellular delivery. nature, 538(7624), 183-192(2016) [3] HUR, J. and CHUNG, A. J. Microfluidic and nanofluidic intracellular delivery. Advanced Science, 8(15), 2004595(2021) [4] ZHANG, P., SHAO, N., and QIN, L. Recent advances in microfluidic platforms for programming cell-based living materials. Advanced Materials, 33(46), 2005944(2021) [5] SHAREI, A., ZOLDAN, J., ADAMO, A., SIM, W. Y., CHO, N., JACKSON, E., MAO, S., SCHNEIDER, S., HAN, M. J., LYTTON-JEAN, A., BASTO, P. A., JHUNJHUNWALA, S., LEE, J., HELLER, D. A., KANG, J. W., HARTOULAROS, G. C., KIM, K. S., ANDERSON, D. G., LANGER, R., and JENSEN, K. F. A vector-free microfluidic platform for intracellular delivery. Proceedings of the National Academy of Sciences, 110(6), 2082-2087(2013) [6] KOLLMANNSPERGER, A., SHAREI, A., RAULF, A., HEILEMANN, M., LANGER, R., JENSEN, K. F., WIENEKE, R., and TAMPE, R. Live-cell protein labelling with nanometre precision by cell squeezing. Nature Communications, 7(1), 1-7(2016) [7] DENG, Y., KIZER, M., RADA, M., SAGE, J., WANG, X., CHEON, D. J., and CHUNG, A. J. Intracellular delivery of nanomaterials via an inertial microfluidic cell hydroporator. Nano Letters, 18(4), 2705-2710(2018) [8] KIZER, M. E., DENG, Y., KANG, G., MIKAEL, P. E., WANG, X., and CHUNG, A. J. Hydroporator:a hydrodynamic cell membrane perforator for high-throughput vector-free nanomaterial intracellular delivery and DNA origami biostability evaluation. Lab on a Chip, 19(10), 1747-1754(2019) [9] KANG, G., CARLSON, D. W., KANG, T. H., LEE, S., HAWARD, S. J., CHOI, I., SHEN, A. Q., and CHUNG, A. J. Intracellular nanomaterial delivery via spiral hydroporation. ACS Nano, 14(3), 3048-3058(2020) [10] HUR, J., PARK, I., LIM, K. M., DOH, J., CHO, S. G., and CHUNG, A. J. Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano, 14(11), 15094-15106(2020) [11] MODARESI, S., PACELLI, S., SUBHAM, S., DATHATHREYA, K., and PAUL, A. Intracellular delivery of exogenous macromolecules into human mesenchymal stem cells by double deformation of the plasma membrane. Advanced Therapeutics, 3(1), 1900130(2020) [12] INGRD, U. and LABATE, S. Acoustic circulation effects and the nonlinear impedance of orifices. Journal of the Acoustical Society of America, 22(2), 211-218(1950) [13] WILTSE, J. M. and GLEZER, A. Manipulation of free shear flows using piezoelectric actuators. Journal of Fluid Mechanics, 249, 261-285(1993) [14] ZHANG, P. F., WANG, J. J., and FENG, L. H. Review of zero-net-mass-flux jet and its application in separation flow control. Science China:Technological Sciences, 51(9), 1315-1344(2008) [15] AI, J. F., XIE, J., and HU, G. H. Numerical simulation of red blood cells deformation in microchannel under zero-net-mass-flux jet. Acta Physica Sinica, 69, 234701(2020) [16] MALLINSON, S. G., JOHNSON, G., GASTON, M., and HONG, G. Three-Dimensional Numerical Simulations of Synthetic Jet Actuator Flows in a Microchannel, Australia, 341-350(2004) [17] PESKIN, C. S. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252(1977) [18] MITTAL, R. and IACCARINO, G. Immersed boundary methods. Annual Review of Fluid Mechanics, 37, 239-261(2005) [19] GOLDSTEIN, D., HANDLER, R., and SIROVICH, L. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics, 105(2), 354-366(1993) [20] PESKIN, C. S. The immersed boundary method. Acta Numerica, 11, 479-517(2002) [21] WANG, X. and LIU, W. K. Extended immersed boundary method using FEM and RKPM. Computer Methods in Applied Mechanics and Engineering, 193(12-14), 1305-1321(2004) [22] ZHANG, L., GERSTENBERGER, A., WANG, X., and LIU, W. K. Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067(2004) [23] LEE, T. R., CHOI, M., KOPACZ, A. M., YUN, S. H., LIU, W. K., and DECUZZI, P. On the nearwall accumulation of injectable particles in the microcirculation:smaller is not better. Scientific Reports, 3(1), 1-8(2013) [24] LIU, W. K., LIU, Y., FARRELL, D., ZHANG, L., WANG, X. S., FUKUI, Y., PATANKAR, N., ZHANG, Y., BAJAJ, C., LEE, J., HONG, J., CHEN, X., and HSU, H. Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering, 195(13-16), 1722-1749(2006) [25] LIU, Y. and LIU, W. K. Rheology of red blood cell aggregation by computer simulation. Journal of Computational Physics, 220(1), 139-154(2006) [26] TAN, J., THOMAS, A., and LIU, Y. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter, 8(6), 1934-1946(2012) [27] TEZDUYAR, T. E. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28, 1-44(1991) [28] TEZDUYAR, T. E. Finite element methods for flow problems with moving boundaries and interfaces. Archives of Computational Methods in Engineering, 8(2), 83-130(2001) [29] HUGHES, T. J. R., FRANCA, L. P., and BALESTRA, M. A new finite element formulation for computational fluid dynamics:V. circumventing the Babuška-Brezzi condition:a stable PetrovGalerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59(1), 85-99(1986) [30] LIU, W. K., JUN, S., and ZHANG, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8-9), 1081-1106(1995) [31] MAAS, S. A., ELLIS, B. J., ATESHIAN, G. A., and WEISS, J. A. FEBio:finite elements for biomechanics. Journal of Biomechanical Engineering, 134(1), 011005(2012) [32] LIU, F., WU, D., and CHEN, K. Mechanical behavior of cells in microinjection:a minimum potential energy study. Journal of the Mechanical Behavior of Biomedical Materials, 24, 1-8(2013) [33] WANG, Q., MANMI, K., and LIU, K. K. Cell mechanics in biomedical cavitation. Interface Focus, 5(5), 20150018(2015) [34] SKALAK, R., TOZEREN, A., ZARDA, R. P., and CHIEN, S. Strain energy function of red blood cell membranes. Biophysical Journal, 13(3), 245-264(1973) [35] POPEL, A. S. and JOHNSON, P. C. Microcirculation and hemorheology. Annual Review of Fluid Mechanics, 37, 43-69(2005) [36] LANOTTE, L., MAUER, J., MENDEZ, S., FEDOSOV, D. A., FROMENTAL, J. M., CLAVERIA, V., NICOUD, F., GOMPPER, G., and ABKARIAN, M. Red cells'dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proceedings of the National Academy of Sciences, 113(47), 13289-13294(2016) [37] EVANS, E., HEINRICH, V., LUDWIG, F., and RAWICZ, W. Dynamic tension spectroscopy and strength of biomembranes. Biophysical Journal, 85(4), 2342-2350(2003) [38] EVANS, E. A., WAUGH, R., and MELNIK, L. Elastic area compressibility modulus of red cell membrane. Biophysical Journal, 16(6), 585-595(1976) [39] SHIGEMATSU, T., KOSHIYAMA, K., and WADA, S. Effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers:molecular dynamics simulation. Scientific Reports, 5(1), 1-10(2015) [40] MCNEIL, P. L. and STEINHARDT, R. A. Plasma membrane disruption:repair, prevention, adaptation. Annual Review of Cell and Developmental Biology, 19, 697-731(2003) [41] OMORI, T., ISHIKAWA, T., BARTHES-BIESEL, D., SALSAC, A. V., IMAI, Y., and YAMAGUCHI, T. Tension of red blood cell membrane in simple shear flow. Physical Review E, 86(5), 056321(2012) [42] TOLPEKINA, T. V., DEN OTTER, W. K., and BRIELS, W. J. Simulations of stable pores in membranes:system size dependence and line tension. Journal of Chemical Physics, 121(16), 8014-8020(2004) |