[1] MA, J. H., HOU, Z. L., and ASSOUAR, B. M. Opening a large full phononic band gap in thin elastic plate with resonant units. Journal of Applied Physics, 115(9), 093508(2014) [2] ZHAO, C. Y., ZHENG, J. Y., SANG, T., WANG, L. C., YI, Q., and WANG, P. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration. Construction and Building Materials, 283(4), 122802(2021) [3] WANG, Y. K., QIAN, D. H., WU, J. H., and HE, F. Y. Attenuation characteristics of vibration in a locally resonant phononic crystal frame structure. Archives of Acoustics, 45(3), 557–562(2020) [4] VASSEUR, J. O., DEYMIER, P. A., KHELIF, A., LAMBIN, P., DJAFARI-ROUHANI, B., AKJOUJ, A., DOBRZYNSKI, L., FETTOUHI, N., and ZEMMOURI, J. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study. Physical Review E, 65(5), 056608(2002) [5] HIRSEKORN, M., DELSANTO, P. P., BATRA, N. K., and MATIC, P. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics, 42(1-9), 231–235(2004) [6] LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734–1736(2000) [7] HE, F. Y., SHI, Z. Y., QIAN, D. H., TU, J., and CHEN, M. L. Flexural wave bandgap properties in metamaterial dual-beam structure. Physics Letters A, 429, 127950(2022) [8] YANG, Q., SONG, T., WEN, X. D., ZHU, H. F., TAN, Z. H., LIU, L. J., LIU, Z, J., and SUN, X. W. Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency. Physics Letters A, 384(35), 126885(2020) [9] ZHOU, J. X., WANG, K., XU, D. L., and OUYANG, H. J. Local resonator with high-static-lowdynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 121(4), 044902(2017) [10] LI, T. J., TANG, Y. Q., and ZHANG, T. Surface adjustment method for cable net structures considering measurement uncertainties. Aerospace Science and Technology, 59, 52–56(2016) [11] WU, J. L., LUO, Z., ZHANG, Y. Q., ZHANG, N., and CHEN, L. P. Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. International Journal for Numerical Methods in Engineering, 95(7), 608–630(2013) [12] JIANG, C., LI, J. W., NI, B. Y., and FANG, T. Some significant improvements for interval process model and non-random vibration analysis method. Computer Methods in Applied Mechanics and Engineering, 357, 112565(2019) [13] NI, B. Y. and JIANG, C. Interval field model and interval finite element analysis. Computer Methods in Applied Mechanics and Engineering, 360, 112713(2020) [14] MCWILLIAM, S. Anti-optimisation of uncertain structures using interval analysis. Computers & Structures, 79(4), 421–430(2001) [15] SOFI, A. and ROMEO, E. A unified response surface framework for the interval and stochastic finite element analysis of structures with uncertain parameters. Probabilistic Engineering Mechanics, 54, 25–36(2018) [16] XIA, B. Z. and YU, D. J. Interval analysis of acoustic field with uncertain-but-bounded parameters. Computers & Structures, 112-113, 235–244(2012) [17] XIA, B. Z. and YU, D. J. Modified interval and subinterval perturbation methods for the static response analysis of structures with interval parameters. Journal of Structural Engineering, 140(5), 04013113(2014) [18] DEGRAUWE, D., LOMBAERT, G., and DE ROECK, G. Improving interval analysis in finite element calculations by means of affine arithmetic. Computers & Structures, 88(3-4), 247–254(2010) [19] XIANG, Y. J. and SHI, Z. Y. Interval analysis of interior acoustic field with element-by-elementbased interval finite-element method. Journal of Engineering Mechanics, 147(11), 04021085(2021) [20] HAN, X. K. and ZHANG, Z. Topological optimization of phononic crystal thin plate by a genetic algorithm. Scientific Reports, 9(1), 8331(2019) [21] CHEN, L. Y., GUO, Y. J., and YI, H. Optimization study of bandgaps properties for twodimensional chiral phononic crystals base on lightweight design. Physics Letters A, 388, 127054(2021) [22] ZHAI, H. F., XIANG, H., MA, X. F., and XIANG, J. W. Optimal bandgaps of a spiral structure based on locally resonant phononic crystals. International Journal of Modern Physics B, 33(22), 1950256(2019) [23] ZHAI, H. F., XIANG, H., MA, X. F., and XIANG, J. W. Optimization scheme of geometric parameters for a 2D locally resonant phononic crystal structure. Japanese Journal of Applied Physics, 58(5), 051001(2019) [24] ZHAI, H. F., XIANG, H., MA, X. F., and XIANG, J. W. Structural parameters optimization of a comb-like structure using locally resonant phononic crystals. Modern Physics Letters B, 33(26), 1950312(2019) [25] LIU, H., SHI, Z. Y., WANG, Y. L., and ZHAI, H. F. A band gap optimization scheme for twodimensional locally resonant phononic crystal with square spiral rings. Physics Letters A, 442, 128134(2022) [26] LI, X., NING, S. W., LIU, Z. L., YAN, Z. M., LUO, C. C., and ZHUANG, Z. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Computer Methods in Applied Mechanics and Engineering, 361, 112737(2020) [27] WU, Y., LIN, X. Y., JIANG, H. X., and CHENG, A. G. Finite element analysis of the uncertainty of physical response of acoustic metamaterials with interval parameters. International Journal of Computational Methods, 17(8), 1950052(2020) [28] HE, Z. C., HU, J. Y., and LI, E. An uncertainty model of acoustic metamaterials with random parameters. Computational Mechanics, 62(5), 1023–1036(2018) |