[1] MA, G. C. and SHENG, P. Acoustic metamaterials: from local resonances to broad horizons. Science Advances, 2(2), e1501595(2016) [2] CAO, L. Y., YANG, Z. C., XU, Y. L., FAN, S. W., ZHU, Y. F., CHEN, Z. L., LI, Y., and ASSOUAR., B. Flexural wave absorption by lossy gradient elastic metasurface. Journal of the Mechanics and Physics of Solids, 143, 104052(2020) [3] LI, X. P., YU, Z. Q., IIZUKA, H., and LEE, T. Experimental demonstration of extremely asymmetric flexural wave absorption at the exceptional point. Extreme Mechanics Letters, 52, 101649(2022) [4] ROMERO-GARCÍA, V., JIMÉNEZ, N., GROBY, J. P., MERKEL, A., TOURNAT, V., THEOCHARIS, G., RICHOUX, O., and PAGNEUX, V. Perfect absorption in mirror-symmetric acoustic metascreens. Physical Review Applied, 14(5), 054055(2020) [5] LIU, Y. Q., SU, X. Y., and SUN, C. T. Broadband elastic metamaterial with single negativity by mimicking lattice systems. Journal of the Mechanics and Physics of Solids, 74, 158–174(2015) [6] WANG, Z. Y., MA, Z. Y., GUO, X. M., and ZHANG, D. S. A new tunable elastic metamaterial structure for manipulating band gaps/wave propagation. Applied Mathematics and Mechanics (English Edition), 42(11), 1543–1554(2021) https://doi.org/10.1007/s10483-021-2787-8 [7] GARCÍA-CHOCANO, V. M., CHRISTENSEN, J., and SÁNCHEZ-DEHESA, J. Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Physical Review Letters, 112(14), 144301(2014) [8] LI, B., HU, Y. B., CHEN, J. L., SU, G. Y., LIU, Y. Q., ZHAO, M. Y., and LI, Z. Efficient asymmetric transmission of elastic waves in thin plates with lossless metasurfaces. Physical Review Applied, 14(5), 054029(2020) [9] LI, Z. N., WANG, Y. Z., and WANG, Y. S. Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses. Applied Mathematics and Mechanics (English Edition), 43(2), 167–184(2022) https://doi.org/10.1007/ s10483-021-2808-9 [10] ZHANG, H. K., CHEN, Y., LIU, X. N., and HU, G. K. An asymmetric elastic metamaterial model for elastic wave cloaking. Journal of the Mechanics and Physics of Solids, 135, 103796(2020) [11] LI, B., LIU, Y. Q., and TAN, K. T. A novel meta-lattice sandwich structure for dynamic load mitigation. Journal of Sandwich Structures & Materials, 21(6), 1880–1905(2019) [12] WANG, K., ZHOU, J. X., TAN, D. G., LI, Z. Y., LIN, Q. D., and XU, D. L. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43(7), 1125–1144(2022) https://doi.org/10.1007/s10483-022-2870-9 [13] HUANG, H. H. and SUN, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11(1), 013003(2009) [14] KONOTOP, V. V., YANG, J. K., and ZEZYULIN, D. A. Nonlinear waves in PT-symmetric systems. Reviews of Modern Physics, 88(3), 035002(2016) [15] EL-GANAINY, R., MAKRIS, K. G., KHAJAVIKHAN, M., MUSSLIMANI, Z. H., ROTTER, S., and CHRISTODOULIDES, D. N. Non-Hermitian physics and PT symmetry. Nature Physics, 14(1), 11–19(2018) [16] MIRI, M. A. and ALÙ, A. Exceptional points in optics and photonics. Science, 363(6422), eaar7709(2019) [17] LIN, Z., RAMEZANI, H., EICHELKRAUT, T., KOTTOS, T., CAO, H., and CHRISTODOULIDES, D. N. Unidirectional invisibility induced by PT-symmetric periodic structures. Physical Review Letters, 106(21), 213901(2011) [18] AURÉGAN, Y. and PAGNEUX, V. PT-symmetric scattering in flow duct acoustics. Physical Review Letters, 118(17), 174301(2017) [19] YI, J. L., NEGAHBAN, M., LI, Z., SU, X. Y., and XIA, R. Y. Conditionally extraordinary transmission in periodic parity-time symmetric phononic crystals. International Journal of Mechanical Sciences, 163, 105134(2019) [20] HODAEI, H., MIRI, M. A., HEINRICH, M., CHRISTODOULIDES, D. N., and KHAJAVIKHAN, M. Parity-time-symmetric microring lasers. Science, 346(6212), 975–978(2014) [21] LUO, J., LI, J., and LAI, Y. Electromagnetic impurity-immunity induced by parity-time symmetry. Physical Review X, 8(3), 031035(2018) [22] DOPPLER, J., MAILYBAEV, A. A., BÖHM, J., KUHL, U., GIRSCHIK, A., LIBISCH, F., MILBURN, T. J., RABL, P., MOISEYEV, N., and ROTTER, S. Dynamically encircling an exceptional point for asymmetric mode switching. nature, 537(7618), 76–79(2016) [23] SHAO, L. B., MAO, W. B., MAITY, S., SINCLAIR, N., HU, Y. W., YANG, L., and LONČAR, M. Non-reciprocal transmission of microwave acoustic waves in nonlinear parity-time symmetric resonators. Nature Electronics, 3(5), 267–272(2020) [24] PENG, B., ÖZDEMIR, Ş. K., LEI, F., MONIFI, F., GIANFREDA, M., LONG, G. L. FAN, S. H., NORI, F., BENDER, C. M., and YANG, L. Parity-time-symmetric whispering-gallery microcavities. Nature Physics, 10(5), 394–398(2014) [25] RÜTER, C. E., MAKRIS, K. G., EL-GANAINY, R., CHRISTODOULIDES, D. N., SEGEV, M., and KIP, D. Observation of parity-time symmetry in optics. Nature Physics, 6(3), 192–195(2010) [26] SUN, Y., TAN, W., LI, H. Q., LI, J., and CHEN, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Physical Review Letters, 112(14), 143903(2014) [27] CHONG, Y. D., CAO, H., and STONE, A. D. Coherent perfect absorbers: time-reversed lasers. Physical Review Letters, 105(5), 053901(2010) [28] JIN, L., WANG, P., and SONG, Z. Unidirectional perfect absorber. Scientific Reports, 6(1), 1–11(2016) [29] WEI, P. J., CROËNNE, C., CHU, S. T., and LI, J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 104(12), 121902(2014) [30] LI, D. T., HUANG, S. B., CHENG, Y., and LI, Y. Compact asymmetric sound absorber at the exceptional point. Science China Physics, Mechanics & Astronomy, 64(4), 1–7(2021) [31] YI, J. L., MA, Z. Y., XIA, R. Y., NEGAHBAN, M., CHEN, C. Q., and LI, Z. Structural periodicity dependent scattering behavior in parity-time symmetric elastic metamaterials. Physical Review B, 106(1), 014303(2022) [32] SUN, J. Q., JOLLY, M. R., and NORRIS, M. A. Passive, adaptive and active tuned vibration absorbers — a survey. Journal of Vibration and Acoustics, 117(B), 234–242(1995) [33] LI, X. P., CHEN. Y. Y., ZHU, R., and HUANG, G. L. An active meta-layer for optimal flexural wave absorption and cloaking. Mechanical Systems and Signal Processing, 149, 107324(2021) [34] ZHU, X. F., RAMEZANI, H., SHI, C. Z., ZHU, J., and ZHANG, X. PT-symmetric acoustics. Physical Review X, 4(3), 031042(2014) [35] FLEURY, R., SOUNAS, D., and ALÙ, A. An invisible acoustic sensor based on parity-time symmetry. Nature Communications, 6, 5905(2015) [36] SHI, C. Z., DUBOIS, M., CHEN, Y., LEI, C., RAMEZANI, H., WANG, Y., and ZHANG, X. Accessing the exceptional points of parity-time symmetric acoustics. Nature Communications, 7, 11110(2016) [37] YI, J. L., LI, Z., NEGAHBAN, M., XIA, R. Y., and ZHU, J. Y. Asymmetric viscoelastic metamaterials for broad bandgap design and unidirectional zero reflection. Mechanical Systems and Signal Processing, 162, 108101(2022) [38] LIU, Y. Q., LIANG, Z. X., ZHU, J., XIA, L. B., MONDAIN-MONVAL, O., BRUNET, T., ALÙ, A., and LI, J. Willis metamaterial on a structured beam. Physical Review X, 9(1), 011040(2019) [39] ZHU, W. W., FANG, X. S., LI, D. T., SUN, Y., LI, Y., JING, Y., and CHEN, H. Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Physical Review Letters, 121(12), 124501(2018) [40] MERKEL, A., THEOCHARIS, G., RICHOUX, O., ROMERO-GARCÍA, V., and PAGNEUX, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102(2015) [41] LONG, H. Y., CHENG, Y., and LIU, X. J. Asymmetric absorber with multiband and broadband for low-frequency sound. Applied Physics Letters, 111(14), 143502(2017) [42] NORRIS, A. N. and PACKO, P. Non-symmetric flexural wave scattering and one-way extreme absorption. The Journal of the Acoustical Society of America, 146(1), 873–883(2019) [43] WANG, Y. F., WANG, Y. Z., WU, B., CHEN, W. Q., and WANG, Y. S. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 72(4), 040801(2020) [44] BERGAMINI, A., DELPERO, T., SIMONI, L. D., LILLO, L. D., RUZZENE, M., and ERMANNI, P. Phononic crystal with adaptive connectivity. Advanced Materials, 26(9), 1343–1347(2014) [45] TRAINITI, G., XIA, Y. W., MARCONI, J., CAZZULANI, G., ERTURK, A., and RUZZENE, M. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Physical Review Letters, 122(12), 124301(2019) [46] ZHU, R., CHEN, Y. Y., BARNHART, M. V., HU, G. K., SUN, C. T., and HUANG, G. L. Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Applied Physics Letters, 108(1), 011905(2016) [47] CHEN, Y. Y., LI, X. P., NASSAR, H., HU, G. K., and HUANG, G. L. A programmable metasurface for real time control of broadband elastic rays. Smart Materials and Structures, 27(11), 115011(2018) [48] XIA, R. Y., YI, J. L., CHEN, Z., and LI, Z. In situ steering of shear horizontal waves in a plate by a tunable electromechanical resonant elastic metasurface. Journal of Physics D: Applied Physics, 53(9), 095302(2019) [49] ROYER, D. and DIEULESAINT, E. Elastic Waves in Solids I: Free and Guided Propagation, Springer Science & Business Media, Heidelberg (1999) [50] HOU, Z. L. and ASSOUAR, B. M. Tunable solid acoustic metamaterial with negative elastic modulus. Applied Physics Letters, 106(25), 251901(2015) [51] MA, Z. Y., CHEN, J. L., LI, B., LI, Z., and SU, X. Y. Dispersion analysis of Lamb waves in composite laminates based on reverberation-ray matrix method. Composite Structures, 136, 419– 429(2016) |