[1] BANKS, R., O’LEARY, R. L., and HAYWARD, G. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation. Ultrasonics, 75, 132-144(2017) [2] TIAN, J., LI, X., LIANG, Z., DING, W., LI, X., TAO, C., and NIE, S. Fabrication of 1-3 piezoelectric composites via modified soft mold process for 40 MHz ultrasonic medical transducers. Ceramics International, 48(3), 3841-3848(2021) [3] JIN, P., FU, J., WANG, F., ZHANG, Y., WANG, P., LIU, X., JIAO, Y., LI, H., CHEN, Y., MA, Y., and FENG, X. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Science Advances, 7(40), 1-13(2021) [4] JIAO, P., HASNI, H., LAJNEF, N., and ALAVI, A. H. Mechanical metamaterial piezoelectric nanogenerator (MM-PENG): design principle, modeling and performance. Materials & Design, 187, 108214(2019) [5] ZHANG, G., ZHAO, P., ZHANG, X., HAN, K., ZHAO, T., ZHANG, Y., JEONG, C. K., JIANG, S., ZHANG, S., and WANG, Q. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy & Environmental Science, 11(8), 2046-2056(2018) [6] DUNN, M. L. and TAYA, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30(2), 161-175(1993) [7] GANDARILLA-PÉREZ, C. A., RODRÍGUEZ-RAMOS, R., SEVOSTIANOV, I., SABINA, F. J., BRAVO-CASTILLERO, J., GUINOVART-DÍAZ, R., and LAU-ALFONSO, L. Extension of Maxwell homogenization scheme for piezoelectric composites containing spheroidal inhomogeneities. International Journal of Solids and Structures, 135, 125-136(2018) [8] WANG, Z., ZHU, J., JIN, X. Y., CHEN, W. Q., and ZHANG, C. Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. Journal of the Mechanics and Physics of Solids, 65(1), 138-156(2014) [9] CHATZIGEORGIOU, G., JAVILI, A., and MERAGHNI, F. Micromechanical method for effective piezoelectric properties and electromechanical fields in multi-coated long fiber composites. International Journal of Solids and Structures, 159, 21-39(2019) [10] CAI, C., LIU, G. R., and LAM, K. Y. A technique for modelling multiple piezoelectric layers. Smart Materials and Structures, 10(4), 689-694(2001) [11] VASHISHTH, A. K. and GUPTA, V. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid. Smart Materials and Structures, 21(12), 125002(2012) [12] CHEN, J., GUO, J., and PAN, E. Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Composite Structures, 162, 401-410(2017) [13] ZHANG, Y. and GAO, Q. Calculation of reflection and transmission coefficients for waves in multilayered piezoelectric structures using the mixed variable method. The Journal of the Acoustical Society of America, 150(6), 4037-4052(2021) [14] WILM, M., BALLANDRAS, S., LAUDE, V., and PASTUREAUD, T. A full 3D plane-waveexpansion model for 1-3 piezoelectric composite structures. The Journal of the Acoustical Society of America, 112(3), 943-952(2002) [15] XIA, R., ZHU, J., YI, J., SHAO, S., and LI, Z. Guided wave propagation in multilayered periodic piezoelectric plate with a mirror plane. International Journal of Mechanical Sciences, 204(2), 106539(2021) [16] BALÉ, A., ROUFFAUD, R., LEVASSORT, F., BRENNER, R., and HLADKY-HENNION, A. C. Homogenization of periodic 1-3 piezocomposite using wave propagation: toward an experimental method. The Journal of the Acoustical Society of America, 149(5), 3122-3132(2021) [17] CAO, W. and QI, W. Plane wave propagation in finite 2-2 composites. Journal of Applied Physics, 78(7), 4627-4632(1995) [18] LIN, P., ZHU, Y., CHEN, Z., FEI, C., CHEN, D., ZHANG, S., LI, D., FENG, W., YANG, Y., and CHAI, C. Design and fabrication of non-periodic 1-3 composite structure for ultrasonic transducer application. Composite Structures, 285(1), 115249(2022) [19] RODIG, T., SCH ONECKER, A., and HLADKY, A. C. Design and characterisation of 1-3 ultrasonic composites using ATILA and ultra fast laser measurements (20 MHz). IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers, Rotterdam, Netherlands (2005) [20] HARVEY, G., GACHAGAN, A., MACKERSIE, J. W., and BANKS, R. Exploring the advantages of a random 1-3 connectivity piezocomposite structure incorporating piezoelectric flbres as the active element. IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers, Vancouver, BC, Canada (2006) [21] YANG, H., CANNATA, J., WILLIAMS, J., and SHUNG, K. K. Crosstalk reduction for highfrequency linear-array ultrasound transducers pseudo-random pillars. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(10), 2312-2321(2012) [22] KIM, J. and TORQUATO, S. Multifunctional composites for elastic and electromagnetic wave propagation. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 8764-8774(2020) [23] MYRSTUEN, L. E. Finite Element Modeling of Heat Generation in 1-3 Piezocomposite Transducers for Underwater Ultrasonic Applications, M. Sc. dissertation, Norwegian University of Science and Technology, Trondheim, 38-57(2018) [24] WILLIS, J. R. Polarization approach to the scattering of elastic waves I, scattering by a single inclusion. Journal of the Mechanics and Physics of Solids, 28(5-6), 287-305(1980) [25] WILLIS, J. R. A polarization approach to the scattering of elastic waves II, multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28(5-6), 307-327(1980) [26] SABINA, F. J. and WILLIS, J. R. A simple self-consistent analysis of wave propagation in particulate composites. Wave Motion, 10(2), 127-142(1988) [27] SABINA, F. J., SMYSHLYAEV, V. P., and WILLIS, J. R. Self-consistent analysis of waves in a matrix-inclusion composite I, aligned spheroidal inclusions. Journal of the Mechanics and Physics of Solids, 41(10), 1573-1588(1993) [28] KANAUN, S. K. Elastic medium with random fields of inhomogeneities. Elastic Medium with Microstructure II, Springer-Verlag, Berlin, 165-228(1983) [29] LEVIN, V. M., MICHELITSCH, T. M., and GAO, H. Propagation of electroacoustic waves in the transversely isotropic piezoelectric medium reinforced by randomly distributed cylindrical inhomogeneities. International Journal of Solids and Structures, 39(19), 5013-5051(2002) [30] LEVIN, V. M., VALDIVIEZO-MIJANGOS, O., and SABINA, F. J. Propagation of electroacoustic axial shear waves in a piezoelectric medium reinforced by continuous fibers. International Journal of Engineering Science, 49(11), 1232-1243(2011) [31] CHEN, P. and SHEN, Y. Propagation of axial shear magneto-electro-elastic waves in piezoelectricpiezomagnetic composites with randomly distributed cylindrical inhomogeneities. International Journal of Solids and Structures, 44(5), 1511-1532(2007) [32] PEÑATE-RODRíGUEZ, H. C., RODRÍGUEZ-RAMOS, R., RIVALTA-VALLADARES, M. C., and SABINA, F. J. Self-consistent analysis of waves in piezoelectric composites with multiple inclusions. 11th Pan-American Congress of Applied Mechanics, Brazilian Association of Engineering and Mechanical Sciences, Rio de Janeiro (2009) [33] ROYER, D. and DIEULESAINT, E. Elastic Waves in Solids I: Free and Guided Propagation, Springer, New York, 130(2000) [34] HILL, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213-222(1965) [35] KINRA, V. K. Dispersive wave propagation in random particulate composites. Recent Advances in Composites in the United States and Japan, American Society for Testing and Materials, Philadelphia, 309-325(1985) [36] GREWE, M. G., GURURAJA, T. R., SHROUT, T. R., and NEWNHAM, R. E. Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37(6), 506-514(1990) [37] CHAN, H. L. W. and UNSWORTH, J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36(4), 434-441(1989) [38] GURURAJA, T. R., CROSS, L. E., NEWNHAM, R. E., AULD, B. A., WANG, Y. J., and SCHULZE, W. A. Piezoelectric composite materials for ultrasonic transducer applications, part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Transactions on Sonics and Ultrasonics, 32(4), 481-498(1985) [39] GURURAJA, T. R., CROSS, L. E., NEWNHAM, R. E., and SCHULZE, W. A. Piezoelectric composite materials for ultrasonic transducer applications, part II: evaluation of ultrasonic medical applications. IEEE Transactions on Sonics and Ultrasonics, 32(4), 499-513(1985) [40] BERLINCOURT, D. A., CURRAN, D. R., and JAFFE, H. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics, 1, 169-270(1964) |