[1] DU, D. X., SUN, W., YAN, X. F., LIU, H. H., XU, K. P., and QIN, Z. Y. Modeling and analysis of nonlinear vibrations for a coupling hard-coated ring disc-cylindric shell structure under piecewise-continuous coupling conditions. International Journal of Mechanical Sciences, 215, 106940 (2022) [2] YANG, C. M., JIN, G. Y., LIU, Z. G., WANG, X. R., and MIAO, X. H. Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions. International Journal of Mechanical Sciences, 92, 162-177 (2015) [3] XU, K. P., CHEN, Z. S., and SUN, W. Optimization of position, size and thickness of viscoelastic damping patch for vibration reduction of a cylindrical shell structure. Composite Structures, 276, 114573 (2021) [4] PLATTENBURG, J., DREYER, J., and SINGH, R. Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner. Mechanical Systems and Signal Processing, 91(3), 422-437 (2016) [5] YAN, B., WANG, K., HU, Z. F., WU, C. Y., and ZHANG, X. N. Shunt damping vibration control technology: a review. Applied Sciences, 7(5), 494 (2017) [6] JUNIOR, V. L., STEFFEN, V., and SAVI, M. A. Piezoelectric structural vibration control. Dynamics of Smart Systems and Structures, 12, 289-309 (2016) [7] GRIPP, J. A. B. and RADE, D. A. Vibration and noise control using shunted piezoelectric transducers: a review. Mechanical Systems and Signal Processing, 112, 359-383 (2018) [8] YANG, Z., SUN, L., ZHANG, C. L., ZHANG, C. Z., and GAO, C. F. Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading. Mechanics of Materials, 164, 104153 (2022) [9] BO, L. D., HE, H. N., GARDONIO, P., LI, Y., and JIANG, J. Z. Design tool for elementary shunts connected to piezoelectric patches set to control multi-resonant flexural vibrations. Journal of Sound and Vibration, 520, 116554 (2022) [10] PERNOD, L., LOSSOUARN, B., ASTOLFI, J. A., and DEÜ, J. F. Vibration damping of marine lifting surfaces with resonant piezoelectric shunts. Journal of Sound and Vibration, 496, 115921 (2021) [11] MOTLAGH, P. L., BEDIZ, B., and BASDOGAN, I. A spectral Chebyshev solution for electromechanical analysis of thin curved panels with multiple integrated piezo-patches. Journal of Sound and Vibration, 486, 115612 (2020) [12] ARAÚJO, A. L. and MADEIRA, J. F. A. Optimal passive shunted damping configurations for noise reduction in sandwich panels. Journal of Vibration and Control, 26(13-14), 1110-1118 (2020) [13] KERBOUA, M., MEGNOUNIF, A., BENGUEDIAB, M., BENRAHOU, K. H., and KAOULALA, F. Vibration control beam using piezoelectric-based smart materials. Composite Structures, 123, 430-442 (2015) [14] HE, J. C., TAN, X., TAO, W., WU, X. H., HE, H., and CHEN, G. P. Reduction of structural vibrations with the piezoelectric stacks ring. International Journal of Applied Electromagnetics and Mechanics, 64(1-4), 729-736 (2020) [15] CROSS, C. J. and FLEETER, S. Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations. Smart Materials and Structures, 11(2), 239-248 (2002) [16] NEUBAUER, M. and WALLASCHECK, J. Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mechanical Systems and Signal Processing, 36(1), 36-52 (2013) [17] LYU, X. F., CHEN, F., REN, Q. Q., TANG, Y., DING, Q., and YANG, T. Z. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33(6), 770-780 (2020) [18] LIU, J., LI, L., HUANG, X., and JEZEQUEL, L. Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor. Mechanical Systems and Signal Processing, 95, 425-445 (2017) [19] THORP, O., RUZZENE, M., and BAZ, A. Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Structures and Materials, 14(4), 594-604 (2005) [20] YIN, D. J., YI, K. J., LIU, Z. Y., ZHANG, A. F., and ZHU, R. Design of cylindrical metashells with piezoelectric materials and digital circuits for multi-modal vibration control. Frontiers in Physics, 10, 958141 (2022) [21] SARAVANOS, D. A. Passively damped laminated piezoelectric shell structures with integrated electric networks. AIAA Journal, 38(7), 1260-1268 (2000) [22] LI, H., WANG, Z. H., LYU, H. Y., ZHOU, Z. X., HAN, Q. K., LIU, J. G., and QIN, Z. Y. Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment. Thin-Walled Structures, 157, 107000 (2020) [23] SONG, X. Y., CAO, T. N., GAO, P. X., and HAN, Q. K. Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method. International Journal of Mechanical Sciences, 165, 105158 (2020) [24] TASKIN, M., ARIKOGLU, A., and DEMIR, O. Vibration and damping analysis of sandwich cylindrical shells by the GDQM. AIAA Journal, 57(7), 3040-3051 (2019) [25] JIN, G. Y., YANG, C. M., LIU, Z. G., GAO, S. Y., and ZHANG, C. Y. A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions. Composite Structures, 130, 124-142 (2015) [26] DU, D. X., SUN, W., YAN, X. F., and XU, K. P. Free vibration analysis of rotating thin-walled cylindrical shells with hard coating based on Rayleigh-Ritz method. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 235(10), 1170-1186 (2021) [27] VIDOLI, S. and DELL'ISOLA, F. Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. European Journal of Mechanics-A/Solids, 20(3), 435-456 (2001) [28] PORFIRI, M., DELL'ISOLA, F., and MASCIOLI, F. M. F. Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. International Journal of Circuit Theory and Applications, 32(4), 167-198 (2010) [29] CASADEI, F., RUZZENE, M., DOZIO, L., and CUNEFARE, K. A. Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Materials and Structures, 19(1), 015002 (2010) [30] SPADONI, A., RUZZENE, M., and CUNEFARE, K. Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. Journal of Intelligent Material Systems and Structures, 20(8), 979-990 (2009) [31] TOFTEKR, J. F. and HΦGSBERG, J. On the inclusion of structural loading and damping in piezoelectric shunt tuning. Journal of Sound and Vibration, 498(12), 115960 (2021) [32] PARK, C. H. and INMAN, D. J. Enhanced piezoelectric shunt design. Shock and Vibration, 10(2), 127-133 (2003) [33] BERARDENGO, M., HΦGSBERG, J., MANZONI, S., VANALI, M., BRANDT, A., and GODI, T. LRLC-shunted piezoelectric vibration absorber. Journal of Sound and Vibration, 474, 115268 (2020) [34] GARDONIO, P., ZIENTEK, M., and BO, L. D. Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control. Mechanical Systems and Signal Processing, 134, 106299 (2019) [35] JUNIOR, C. D. M., ERTURK, A., and INMAN, D. J. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327(1-2), 9-25 (2009) [36] THOMAS, O., DUCARNE, J., and DEÜ, J. F. Performance of piezoelectric shunts for vibration reduction. Smart Materials and Structures, 21(1), 015008 (2011) [37] HU, J. Y., LI, Z. H., SUN, Y., and LI, Q. H. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator. Chinese Physics B, 25(12), 127701 (2016) [38] DAVIS, C. L. and LESIEUTRE, G. A. A modal strain energy approach to the prediction of resistively shunted piezoceramic damping. Journal of Sound and Vibration, 184(1), 129-139 (1995) [39] LIAO, Y. B. and SODANO, H. A. Piezoelectric damping of resistively shunted beams and optimal parameters for maximum damping. Journal of Vibration and Acoustics, 132(4), 041014 (2010) [40] FEIN, O. M. and GAUL, L. On the application of shunted piezoelectric material to enhance structural damping of a plate. Journal of Intelligent Material Systems and Structures, 15(9-10), 737-743 (2004) [41] BISHEH, H., RABCZUK, T., and WU, N. Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Composites Part B, 187, 107739 (2020) [42] LI, M., SUN, W., LIU, Y., and MA, H. W. Influence analysis of control signal phase on the vibration reduction effect of active constrained layer damping. Applied Acoustics, 190, 108658 (2022) [43] HAGOOD, N. W. and FLOTOW, A. V. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243-268 (1991) [44] FERNANDES, A. and POUGET, J. Structural response of composite plates equipped with piezoelectric actuators. Computers and Structures, 84(22-23), 1459-1470 (2006) [45] CHAI, Q. D., WANG, Y. Q., and TENG, M. W. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions. Applied Mathematics and Mechanics (English Edition), 43(8), 1203-1218 (2022) https://doi.org/10.1007/s10483-022-2892-7 [46] LI, C. F., LI, P. Y., ZHANG, Z. X., and WEN, B. C. Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control. Composite Structures, 233, 111575 (2020) [47] SHENG, G. G. and WANG, X. Nonlinear vibration control of functionally graded laminated cylindrical shells. Composites Part B: Engineering, 52, 1-10 (2013) [48] SUN, S. P., CAO, D. Q., and HAN, Q. K. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method. International Journal of Mechanical Sciences, 68, 180-189 (2013) [49] CHEN, Z. S., DU, D. X., and SUN, W. Solution of nonlinear eigenvalues for the viscoelastic damped cylindrical shell considering the frequency dependence of viscoelastic materials. Thin-Walled Structures, 173, 109013 (2022) [50] ZHANG, D. G. The Lagrange dynamic equations of multi-rigidbody systems with external shocks. Applied Mathematics and Mechanics (English Edition), 17(6), 589-595 (1996) https://doi.org/10.1007/BF00119758 [51] DU, X. K., CHEN, Y. Z., ZHANG, J., GUO, X., LI, L., and ZHANG, D. G. Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect. Applied Mathematics and Mechanics (English Edition), 44(1), 125-140 (2023) https://doi.org/10.1007/s10483-023-2951-9 [52] YIN, T. T., DENG, Z. C., HU, W. P., and WANG, X. D. Dynamic modeling and simulation of deploying process for space solar power satellite receiver. Applied Mathematics and Mechanics (English Edition), 39(2), 261-274 (2018) https://doi.org/10.1007/s10483-2293-6 [53] BILASSE, M., DAYA, E. M., and AZRAR, L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. Journal of Sound and Vibration, 329(23), 4950-4969 (2010) [54] SHI, Y. M., SOL, H., and HUA, H. X. Material parameter identification of sandwich beams by an inverse method. Journal of Sound and Vibration, 290(3), 1234-1255 (2006) [55] KIM, S. Y. and LEE, D. H. Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs. Journal of Sound and Vibration, 324(3-5), 570-586 (2009) [56] MARANO, G. C., QUARANTA, G., and MONTI, G. Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Computer-Aided Civil and Infrastructure Engineering, 26(2), 92-110 (2011) [57] LIU, X. D., SUN, W., and GAO, Z. H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm. IEEE Access, 8, 224394-224408 (2020) |