Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 69-84.doi: https://doi.org/10.1007/s10483-024-3067-8
收稿日期:2023-05-31
									
				
									
				
									
				
											出版日期:2024-01-01
									
				
											发布日期:2023-12-26
									
			
        
               		Chen ZHAO, Zhenli CHEN*(
), C. T. MUTASA, Dong LI
			  
			
			
			
                
        
    
Received:2023-05-31
									
				
									
				
									
				
											Online:2024-01-01
									
				
											Published:2023-12-26
									
			Contact:
					Zhenli CHEN   
											E-mail:zhenlichen@nwpu.edu.cn
												Supported by:中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 69-84.
Chen ZHAO, Zhenli CHEN, C. T. MUTASA, Dong LI. Effects of layer interactions on instantaneous stability of finite Stokes flows[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 69-84.
| 1 | HACK, M. J., and ZAKI, T. A. The influence of harmonic wall motion on transitional boundary layers. Journal of Fluid Mechanics, 760, 63- 94 (2014) | 
| 2 | HACK, M. J., and ZAKI, T. A. Modal and non-modal stability of boundary layers forced by spanwise wall oscillations. Journal of Fluid Mechanics, 778, 389- 427 (2015) | 
| 3 | DAVIS, S. H. The stability of time-periodic flows. Annual Review of Fluid Mechanics, 8, 57- 74 (1976) | 
| 4 | SCHMID, P. J., and HENNINGSON, D. S. Stability and Transition in Shear Flows, Springer-Verlag, New York 56- 60 (2001) | 
| 5 | LUO, J. S., and WU, X. S. On the linear instability of a finite Stokes layer: instantaneous versus Floquet modes. Physics of Fluids, 22 (5), 054106 (2010) | 
| 6 | KERCZEK, C. V., and DAVIS, S. H. Linear stability theory of oscillatory Stokes layers. Journal of Fluid Mechanics, 62 (4), 753- 773 (2006) | 
| 7 | HALL, P. The linear stability of flat Stokes layers. Proceedings of the Royal Society A, 359 (1697), 151- 166 (1978) | 
| 8 | BLENNERHASSETT, P. J., and BASSOM, A. P. The linear stability of flat Stokes layers. Journal of Fluid Mechanics, 464, 393- 410 (2002) | 
| 9 | BLENNERHASSETT, P. J., and BASSOM, A. P. The linear stability of high-frequency oscillatory flow in a channel. Journal of Fluid Mechanics, 556, 1- 25 (2006) | 
| 10 | OBREMSKI, H. J., and MORKOVIN, M. V. Application of a quasi-steady stability model to periodic boundary-layer flows. AIAA Journal, 7 (7), 1298- 1301 (1969) | 
| 11 | COWLEY, S. J. High frequency Rayleigh instability of Stokes layers. Stability of Time Dependent and Spatially Varying Flows (ed(s). DWOYER, D. L. and HUSSAINI, M. Y.), Springer-Verlag, New York, 261-275 (1987) | 
| 12 | COLLINS, J. I. Inception of turbulence at the bed under periodic gravity waves. Journal of Geophysical Research, 68 (21), 6007- 6014 (1963) | 
| 13 | DAVIS, S. H., and KERCZEK, C. V. A reformulation of energy stability theory. Archive for Rational Mechanics and Analysis, 52, 112- 117 (1973) | 
| 14 | CLAMEN, M., and MINTON, P. An experimental investigation of flow in an oscillating pipe. Journal of Fluid Mechanics, 81 (3), 421- 431 (1977) | 
| 15 | MERKLI, P., and THOMANN, H. Transition to turbulence in oscillating pipe flow. Journal of Fluid Mechanics, 68 (3), 567- 576 (1975) | 
| 16 | HINO, M., SAWAMOTO, M., and TAKASU, S. Experiments on transition to turbulence in an oscillatory pipe flow. Journal of Fluid Mechanics, 75 (2), 193- 207 (1976) | 
| 17 | ECKMANN, D. M., and GROTBERG, J. B. Experiments on transition to turbulence in oscillatory pipe flow. Journal of Fluid Mechanics, 222, 329- 350 (1991) | 
| 18 | THOMAS, C., BLENNERHASSETT, P. J., BASSOM, A. P., and DAVIS, C. The linear stability of a Stokes layer subjected to high-frequency perturbations. Journal of Fluid Mechanics, 764, 193- 218 (2015) | 
| 19 | ZHAO, C., CHEN, Z. L., and LI, D. Instantaneous linear stability of plane Poiseuille flow forced by spanwise oscillations. Physics of Fluids, (4), 043608 (2019) | 
| 20 | JOVANOVIC, M. R. Turbulence suppression in channel flows by small amplitude transverse wall oscillations. Physics of Fluids, 20 (1), 014101 (2008) | 
| 21 | MASON, J. C., and HANDSCOMB, D. C. Chebyshev Polynomials, Chapman and Hall/CRC, New York 277- 311 (2002) | 
| [1] | N. AKHTAR G. A. H. CHOWDHURY S.K.SEN. Stokes flow before plane boundary with mixed stick-slip boundary conditions[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(6): 795-804. | 
| [2] | M.L.KAURANGIN B.K.JHA. Unsteady generalized Couette flow in composite microchannel[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(1): 23-32. | 
| [3] | 陈忠利 游振江. New expression for collision efficiency of spherical nanoparticles in Brownian coagulation[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(7): 851-860. | 
| [4] | 陈波 李孝伟 刘高联. Constraint-induced restriction and extension operators with applications[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(11): 1345-1352. | 
| [5] | 陆华剑;张慧生. MOTION AND DEFORMATION OF VISCOUS DROP IN STOKES FLOW NEAR RIGID WALL[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(12): 1634-1642 . | 
| [6] | . AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(10): 1319-1331 . | 
| [7] | N. Aktar;F. Rahman;S. K. Sen. STOKES FLOW DUE TO FUNDAMENTAL SINGULARITIES BEFORE A PLANE BOUNDARY[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(7): 799-805. | 
| [8] | P. K. YADAV, A. TIWARI, P. SINGH. Motion through spherical droplet with non-homogenous porous layer in spherical container[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1069-1082. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||

	
Email Alert
RSS