| 1 | KRAUS, A. D.,   AZIZ, A.,   WELTY, J., and   SEKULIC, D. P.   Extended surface heat transfer. Applied Mechanics Reviews, 54 (5), B92 (2001) | 
																													
																						| 2 | GORLA, R. S. R., and   BAKIER, A. Y.   Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38 (5), 638- 645 (2011) | 
																													
																						| 3 | AZIZ, A., and   TORABI, M.   Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transfer Asian Research, 41 (2), 99- 113 (2012) | 
																													
																						| 4 | KUNDU, B.,   DAS, R.,   WANKHADE, P. A., and   LEE, K. S.   Heat transfer improvement of a wet fin under transient response with a unique design arrangement aspect. International Journal of Heat and Mass Transfer, 127, 1239- 1251 (2018) | 
																													
																						| 5 | WANG, F. Z.,   VARUN-KUMAR, R. S.,   SOWMYA, G.,   EL-ZAHAR, E. R.,   PRASANNAKUMARA, B. C.,   IJAZ-KHAN, M.,   KHAN, S. U.,   MALIK, M. Y., and   XIA, W. F.   LSM and DTM-Páde approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Studies in Thermal Engineering, 35, 101846 (2022) | 
																													
																						| 6 | KIWAN,S., and   AL-NIMR, M. A.   Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123 (4), 790- 795 (2001) | 
																													
																						| 7 | KIWAN, S.   Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences, 46 (10), 1046- 1055 (2007) | 
																													
																						| 8 | DAS, R.,   SINGH, K.,   AKAY, B., and   GOGOI, T. K.   Application of artificial bee colony algorithm for maximizing heat transfer in a perforated fin. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232 (1), 38- 48 (2018) | 
																													
																						| 9 | NABATI, M.,   JALALVAND, M., and   TAHERIFAR, S.   Sinc collocation approach through thermal analysis of porous fin with magnetic field. Journal of Thermal Analysis and Calorimetry, 144 (6), 2145- 2158 (2021) | 
																													
																						| 10 | PRASANNAKUMARA, B. C.   Assessment of the local thermal non-equilibrium condition for nanofluid flow through porous media: a comparative analysis. Indian Journal of Physics, 96 (8), 2475- 2483 (2022) | 
																													
																						| 11 | HOSHYAR, H. A.,   GANJI, D. D., and   MAJIDIAN, A. R.   Least square method for porous fin in the presence of uniform magnetic field. Journal of Applied Fluid Mechanics, 9 (2), 661- 668 (2016) | 
																													
																						| 12 | OGUNTALA, G.,   SOBAMOWO, G.,   ABD-ALHAMEED, R., and   JONES, S.   Efficient iterative method for investigation of convective-radiative porous fin with internal heat generation under a uniform magnetic field. International Journal of Applied and Computational Mathematics, 5 (1), 1- 19 (2019) | 
																													
																						| 13 | DAS, R., and   KUNDU, B.   Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021) | 
																													
																						| 14 | GIREESHA, B. J.,   SOWMYA, G., and   SRIKANTHA, N.   Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study. International Journal of Ambient Energy, 43 (1), 3402- 3409 (2022) | 
																													
																						| 15 | AZIZ, A., and   KHANI, F.   Convection-radiation from a continuously moving fin of variable thermal conductivity. Journal of the Franklin Institute, 348 (4), 640- 651 (2011) | 
																													
																						| 16 | BHANJA, D.,   KUNDU, B., and   AZIZ, A.   Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Energy Conversion and Management, 88, 842- 853 (2014) | 
																													
																						| 17 | TURKYILMAZOGLU, M.   Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346- 351 (2018) | 
																													
																						| 18 | PAVITHRA, C. G.,   GIREESHA, B. J., and   KEERTHI, M. L.   Heat transfer analysis of a convective radiative porous moving longitudinal fin exposed to magnetic field by adomian decomposition Sumudu transform method. Physica Scripta, 98 (4), 045208 (2023) | 
																													
																						| 19 | JAGADEESHA, K. C.,   KUMAR, R. V.,   ELATTAR, S.,   KUMAR, R.,   PRASANNAKUMARA, B. C.,   KHAN, M. I., and   MALIK, M. Y.   A physical depiction of a semi-spherical fin unsteady heat transfer and thermal analysis of a fully wetted convective-radiative semi-spherical fin. Journal of the Indian Chemical Society, 99 (9), 100457 (2022) | 
																													
																						| 20 | MILLER, K. S., and   ROSS, B.   An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993) | 
																													
																						| 21 | ADOMIAN, G.   Solving Frontier Problems of Physics, Springer Science & Business Media, New York (2013) | 
																													
																						| 22 | WATUGALA, G.   Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Integrated Education, 24 (1), 35- 43 (1993) | 
																													
																						| 23 | PATEL, T., and   MEHER, R.   A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using adomian decomposition Sumudu transform method. Procedia Engineering, 127, 751- 758 (2015) | 
																													
																						| 24 | PATEL, T., and   MEHER, R.   Adomian decomposition Sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation. Springer Plus, 5 (1), 1- 18 (2016) | 
																													
																						| 25 | KEERTHI, M. L.,   GIREESHA, B. J., and   SOWMYA, G.   Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341 (2022) | 
																													
																						| 26 | GOUD, J. S.,   SRILATHA, P.,   KUMAR, R. V.,   KUMAR, K. T.,   KHAN, U.,   RAIZAH, Z., and   GALAL, A. M.   Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 (2022) | 
																													
																						| 27 | ABDULRAHMAN, A.,   GAMAOUN, F.,   KUMAR, R. V.,   KHAN, U.,   GILL, H. S.,   NAGARAJA, K. V., and   GALAL, A. M.   Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2-SiO2/hexanol hybrid nanofluid using hybrid residual power series method. Case Studies in Thermal Engineering, 43, 102777 (2023) | 
																													
																						| 28 | ARIF, M.,   DI PERSIO, L.,   KUMAM, P.,   WATTHAYU, W., and   AKGÜL, A.   Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Scientific Reports, 13 (1), 4596 (2023) |