Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (3): 563-580.doi: https://doi.org/10.1007/s10483-024-3096-6
• • 上一篇
收稿日期:
2023-11-18
出版日期:
2024-03-03
发布日期:
2024-02-24
N. HUMNEKAR, D. SRINIVASACHARYA*()
Received:
2023-11-18
Online:
2024-03-03
Published:
2024-02-24
Contact:
D. SRINIVASACHARYA
E-mail:dsc@nitw.ac.in
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580.
N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580.
1 | KASIBHATLA, R. R., KÖNIG-HAAGEN, A., RÖSLER, F., and BRÜGGEMANN, D. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity. Heat and Mass Transfer, 53, 1735- 1744 (2017) |
2 | YUEN, D. A., BALACHANDAR, S., and HANSEN, U. Modelling mantle convection: a significant challenge in geophysical fluid dynamics. Geophysical and Astrophysical Convection, CRC Press, Boca Raton, 257–294 (2000) |
3 | MANJUNATHA, S., and GIREESHA, B. Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. Ain Shams Engineering Journal, 7 (1), 505- 515 (2016) |
4 | GOYAL, N., and MEIBURG, E. Unstable density stratification of miscible fluids in a vertical Hele-Shaw cell: influence of variable viscosity on the linear stability. Journal of Fluid Mechanics, 516, 211- 238 (2004) |
5 | ANAM, A. N., SIDDHESHWAR, P., NAGOUDA, S. S., and PRANESH, S. Effects of variable viscosity and rotation modulation on ferroconvection. Journal of Thermal Analysis and Calorimetry, 147 (7), 4667- 4682 (2022) |
6 | HUPPERT, H. E., and TURNER, J. S. Double-diffusive convection. Journal of Fluid Mechanics, 106, 299- 329 (1981) |
7 | CHAMKHA, A. J., and AL-NASER, H. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. International Journal of Thermal Sciences, 40 (3), 227- 244 (2001) |
8 | YADAV, D., AGRAWAL, G., and BHARGAVA, R. Onset of double-diffusive nanofluid convection in a layer of saturated porous medium with thermal conductivity and viscosity variation. Journal of Porous Media, 16 (2), 105- 121 (2013) |
9 | UMAVATHI, J., YADAV, D., and MOHITE, M. B. Linear and nonlinear stability analyses of double-diffusive convection in a porous medium layer saturated in a Maxwell nanofluid with variable viscosity and conductivity. Elixir Mechanical Engineering, 79, 30407- 30426 (2015) |
10 | SWAMY, M. S. Effect of cross-diffusion on the onset of double-diffusive reaction convection in a porous layer. Journal of Porous Media, 20 (7), 619- 634 (2017) |
11 | DEEPIKA, N. Linear and nonlinear stability of double-diffusive convection with the Soret effect. Transport in Porous Media, 121 (1), 93- 108 (2018) |
12 | BEAUME, C., BERGEON, A., and KNOBLOCH, E. Three-dimensional doubly diffusive convectons: instability and transition to complex dynamics. Journal of Fluid Mechanics, 840, 74- 105 (2018) |
13 | ATTIA, A., MAMOU, M., BENISSAAD, S., and OUAZAA, N. Linear and nonlinear stability of Soret-Dufour Lapwood convection near double codimension-2 points. Heat Transfer-Asian Research, 48 (3), 763- 792 (2019) |
14 | SHIVAKUMARA, I., RAGHUNATHA, K., SAVITHA, M., and DHANANJAYA, M. Implication of cross-diffusion on the stability of double-diffusive convection in an imposed magnetic field. Zeitschrift für Angewandte Mathematik und Physik, 72 (3), 117 (2021) |
15 | SHANKAR, B., NAVEEN, S., and SHIVAKUMARA, I. Stability of double diffusive natural convection in a vertical porous layer. Transport in Porous Media, 141 (1), 87- 105 (2022) |
16 | NOON, N. J., and HADDAD, S. Stability analysis for rotating double-diffusive convection in the presence of variable gravity and reaction effects: Darcy model. Special Topics & Reviews in Porous Media: An International Journal, 13 (4), 1- 22 (2022) |
17 | CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. International Mechanical Engineering Congress and Exhibition, CONF-951135-29, USDOE, San Francisco (1995) |
18 | KASAEIAN, A., DANESHAZARIAN, R., MAHIAN, O., KOLSI, L., CHAMKHA, A. J., WONGWISES, S., and POP, I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. International Journal of Heat and Mass Transfer, 107, 778- 791 (2017) |
19 | RANA, G. C., and CHAND, R. Onset of thermal convection in a rotating nanofluid layer saturating a darcy-brinkman porous medium: a more realistic model. Journal of Porous Media, 18 (6), 629- 635 (2015) |
20 | UMAVATHI, J. C., and PRATHAP-KUMAR, J. Onset of convection in a porous medium layer saturated with an Oldroyd-B nanofluid. ASME Journal of Heat Transfer, 139 (1), 012401 (2016) |
21 | KHALID, I. K., MOKHTAR, N. F. M., HASHIM, I., IBRAHIM, Z. B., and GANI, S. S. A. Effect of internal heat source on the onset of double-diffusive convection in a rotating nanofluid layer with feedback control strategy. Advances in Mathematical Physics, 2017, 2789024 (2017) |
22 | AKBARZADEH, P., and MAHIAN, O. The onset of nanofluid natural convection inside a porous layer with rough boundaries. Journal of Molecular Liquids, 272, 344- 352 (2018) |
23 | RAZA, J., MEBAREK-OUDINA, F., and CHAMKHA, A. J. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15 (4), 737- 757 (2019) |
24 | TOGHRAIE, D., MASHAYEKHI, R., ARASTEH, H., SHEYKHI, S., NIKNEJADI, M., and CHAMKHA, A. J. Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. International Journal of Numerical Methods for Heat & Fluid Flow, 30 (4), 1795- 1814 (2019) |
25 | YADAV, D. The density-driven nanofluid convection in an anisotropic porous medium layer with rotation and variable gravity field: a numerical investigation. Journal of Applied and Computational Mechanics, 6 (3), 699- 712 (2020) |
26 | KAPEN, P. T., KETCHATE, C. G. N., FOKWA, D., and TCHUEN, G. Linear stability analysis of (Cu-AlAl2O3)/water hybrid nanofluid flow in porous media in presence of hydromagnetic, small suction and injection effects. Alexandria Engineering Journal, 60 (1), 1525- 1536 (2021) |
27 | SRINIVASACHARYA, D., and BARMAN, D. Linear stability of convection in a vertical channel filled with nanofluid saturated porous medium. Heat Transfer, 50 (4), 3220- 3239 (2021) |
28 | KETCHATE, C. D. N., KAPEN, P. T., FOKWA, D., and TCHUEN, G. Stability analysis of mixed convection in a porous horizontal channel filled with a Newtonian AlAl2O3/water nanofluid in presence of magnetic field and thermal radiation. Chinese Journal of Physics, 79, 514- 530 (2022) |
29 | BARLETTA, A., and REES, D. Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer. International Journal of Heat and Mass Transfer, 83, 327- 336 (2015) |
30 | MATTA, A., and HILL, A. A. Double-diffusive convection in an inclined porous layer with a concentration-based internal heat source. Continuum Mechanics and Thermodynamics, 30 (1), 165- 173 (2018) |
31 | BARLETTA, A., and CELLI, M. Instability of combined forced and free flow in an inclined porous channel. International Journal of Computational Methods, 13 (2), 1640001 (2016) |
32 | CELLI, M., and BARLETTA, A. Onset of buoyancy driven convection in an inclined porous layer with an isobaric boundary. International Journal of Heat and Mass Transfer, 132, 782- 788 (2019) |
33 | WEN, B., and CHINI, G. P. On moderate-Rayleigh-number convection in an inclined porous layer. Fluids, 4 (2), 101 (2019) |
34 | ROY, K., PONALAGUSAMY, R., and MURTHY, P. The effects of double-diffusion and viscous dissipation on the oscillatory convection in a viscoelastic fluid saturated porous layer. Physics of Fluids, 32 (9), 094108 (2020) |
35 |
HUMNEKAR, N., and DARBHASAYANAM, S. The stability of the nanofluid flow in an inclined porous channel with variable viscosity. Numerical Heat Transfer, Part A: Applications, (2023)
doi: 10.1080/10407782.2023.2252176 |
36 | SUKANEK, P. C., GOLDSTEIN, C. A., and LAURENCE, R. L. The stability of plane Couette flow with viscous heating. Journal of Fluid Mechanics, 57 (4), 651- 670 (1973) |
37 | BARLETTA, A., and STORESLETTEN, L. Thermoconvective instabilities in an inclined porous channel heated from below. International Journal of Heat and Mass Transfer, 54 (13-14), 2724- 2733 (2011) |
38 | NIKUSHCHENKO, D. and PAVLOVSKY, V. Fluid motion equations in tensor form. Advances on Tensor Analysis and Their Applications, IntechOpen, London (2020) |
39 | BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240- 250 (2006) |
40 | KUZNETSOV, A. V. and NIELD. Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transport in Porous Media, 81, 409- 422 (2010) |
41 | WALL, D., and WILSON, S. The linear stability of channel flow of fluid with temperature-dependent viscosity. Journal of Fluid Mechanics, 323, 107- 132 (1996) |
42 | FALSAPERLA, P., and MULONE, G. Thermal convection in an inclined porous layer with Brinkman law. Ricerche di Matematica, 67 (2), 983- 999 (2018) |
43 | SRIVASTAVA, H., DALAL, A., SAHU, K. C., and BISWAS, G. Temporal linear stability analysis of an entry flow in a channel with viscous heating. International Journal of Heat and Mass Transfer, 109, 922- 929 (2017) |
44 | CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., and ZANG, T. A. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer Berlin, Heidelberg (2007) |
[1] | P. G. SIDDHESHWAR, D. UMA, S. BHAVYA. Effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard convection in Newtonian dielectric liquid[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1601-1614. |
[2] | A. M. MEGAHED. Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(11): 1615-1624. |
[3] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA. Stability of triple diffusive convection in a viscoelastic fluid-saturated porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(10): 1385-1410. |
[4] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA, SOWBHAGYA. Stability of buoyancy-driven convection in an Oldroyd-B fluid-saturated anisotropic porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 653-666. |
[5] | K. R. RAGHUNATHA, I. S. SHIVAKUMARA, B. M. SHANKAR. Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 153-168. |
[6] | Xiangming XIONG, Jianjun TAO. Lower bound for transient growth of inclined buoyancy layer[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(6): 779-796. |
[7] | Jun HU, D. HENRY, H. BENHADID, Xieyuan YIN. Transient growth in Poiseuille-Rayleigh-Bénard flows of binary fluids with Soret effect[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(9): 1203-1218. |
[8] | T. HAYAT, M. IMTIAZ, A. ALSAEDI. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(5): 573-582. |
[9] | S.P.ISA N.M.ARIFIN R.NAZAR M.N.SAAD. Effect of non-uniform temperature gradient and magnetic field on onset of Marangoni convection heated from below by a constant heat flux[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(7): 797-804. |
[10] | Abdullah H. AlEssa. 三角形穿孔翅片对自然对流传热的强化作用[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(8): 1033-1044 . |
[11] | . EFFECTS OF VISCOUS DISSIPATION ON THERMALLY DEVELOPING FORCED CONVECTION IN A POROUS SATURATED CIRCULAR TUBE WITH AN ISOFLUX WALL[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(5): 617-626 . |
[12] | M. KHAN, A. AHMED, J. AHMED. Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo-Christov theory[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(4): 655-666. |
[13] | M. H. A. KAMAL, N. A. RAWI, A. ALI, S. SHAFIE. Effects of g-jitter and radiation on three-dimensional double diffusion stagnation point nanofluid flow[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(11): 1707-1722. |
[14] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||