Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (4): 711-724.doi: https://doi.org/10.1007/s10483-024-3101-6
收稿日期:
2023-09-24
出版日期:
2024-04-01
发布日期:
2024-04-08
F. JAZINIDORCHEH, M. GHASSEMI*()
Received:
2023-09-24
Online:
2024-04-01
Published:
2024-04-08
Contact:
M. GHASSEMI
E-mail:ghasemi@kntu.ac.ir
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 711-724.
F. JAZINIDORCHEH, M. GHASSEMI. The viscous strip approach to simplify the calculation of the surface acoustic wave generated streaming[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 711-724.
1 | WU, M., CHEN, C., WANG, Z., BACHMAN, H., OUYANG, Y., HUANG, P. H., SADOVSKY, Y., and HUANG, T. J. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab on a Chip, 19 (7), 1174- 1182 (2019) |
2 | WU, M., OZCELIK, A., RUFO, J., WANG, Z., FANG, R., and HUANG, T. J. Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 5 (1), 31231539 (2019) |
3 | WU, Y., STEWART, A. G., and LEE, P. V. S. On-chip cell mechanophenotyping using phase modulated surface acoustic wave. Biomicrofluidics, 13 (2), 024107 (2019) |
4 | DEVENDRAN, C., CARTHEW, J., FRITH, J. E., and NEILD, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Advanced Science, 6 (24), 1902326 (2019) |
5 | DAS, P. K., SNIDER, A. D., and BHETHANABOTLA, V. R. Acoustothermal heating in surface acoustic wave driven microchannel flow. Physics of Fluids, 31, 106106 (2019) |
6 | NI, Z., YIN, C., XU, G., XIE, L., HUANG, J., LIU, S., TU, J., GUO, X., and ZHANG, D. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain. Lab on a Chip, 19 (16), 2728- 2740 (2019) |
7 | SKOV, N. R., and BRUUS, H. Modeling of microdevices for SAW-based acoustophoresis——a study of boundary conditions. Micromachines, 7 (10), 1- 14 (2016) |
8 | BARNKOB, R., NAMA, N., REN, L., HUANG, T. J., COSTANZO, F., and KÄHLER, C. J. Acoustically driven fluid and particle motion in confined and leaky systems. Physical Review Applied, 9 (1), 014027 (2018) |
9 | NAMA, N., BARNKOB, R., MAO, Z., KÄHLER, C. J., COSTANZO, F., and HUANG, T. J. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab on a Chip, 15 (12), 2700- 2709 (2015) |
10 | OZCELIK, A., RUFO, J., GUO, F., GU, Y., LI, P., LATA, J., and HUANG, T. J. Acoustic tweezers for the life sciences. Nature Methods, 15 (12), 1021- 1028 (2018) |
11 | HSU, J. C., HSU, C. H., and HUANG, Y. W. Acoustophoretic control of microparticle transport using dual-wavelength surface acoustic wave devices. Micromachines, 10 (1), 52 (2019) |
12 | MANOR, O., REZK, A. R., FRIEND, J. R., and YEO, L. Y. Dynamics of liquid films exposed to high-frequency surface vibration. Physical Review E, 91 (5), 053015 (2015) |
13 | REZK, A. R., MANOR, O., FRIEND, J. R., and YEO, L. Y. Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nature Communications, 3, 1167 (2012) |
14 | GUBAIDULLIN, D. A., OSIPOV, P. P., and ABDYUSHEV, A. A. Simulation using the limiting velocity approach of acoustic streaming establishment and aerosol particle focusing in complex-shaped acoustofluidic devices. Applied Mathematical Modelling, 92, 785- 797 (2021) |
15 | HAHN, P., LEIBACHER, I., BAASCH, T., and DUAL, J. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles. Lab on a Chip, 15 (22), 4302- 4313 (2015) |
16 | LEI, J., GLYNNE-JONES, P., and HILL, M. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab on a Chip, 13 (11), 2133- 2143 (2013) |
17 | LEI, J., GLYNNE-JONES, P., and HILL, M. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluidics and Nanofluidics, 21 (2), 23 (2017) |
18 | MARAMIZONOUZ, S., RAHMATI, M., LINK, A., FRANKE, T., and FU, Y. Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow. International Journal of Engineering Science, 169, 103563 (2021) |
19 | CHEN, C., ZHANG, S. P., MAO, Z., NAMA, N., GU, Y., HUANG, P. H., JING, Y., GUO, X., COSTANZO, F., and HUANG, T. J. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics. Lab on a Chip, 18 (23), 3645- 3654 (2018) |
20 | LIU, X., ZHENG, T., and WANG, C. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Ultrasonics, 129, 106914 (2023) |
21 | TAN, M. K., and YEO, L. Y. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves. Physical Review Fluids, 3 (4), 044202 (2018) |
22 | SRIPHUTKIAT, Y., and ZHOU, Y. Particle manipulation using standing acoustic waves in the microchannel at dual-frequency excitation: effect of power ratio. Sensors and Actuators, A: Physical, 263, 521- 529 (2017) |
23 | BRUUS, H. Theoretical Microfluidics, Oxford University Press, Oxford (2007) |
24 | LAURELL, T. and LENSHOF, A. Microscale Acoustofluidics, The Royal Society of Chemistry, London (2014) |
25 | FRIEND, J., and YEO, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 83 (2), 647- 704 (2011) |
26 | GUO, F., MAO, Z., CHEN, Y., XIE, Z., LATA, J. P., LI, P., REN, L., LIU, J., YANG, J., DAO, M., SURESH, S., and HUANG, T. J. Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 113 (6), 1522- 1527 (2016) |
27 | VANNESTE, J., and BÜHLER, O. Streaming by leaky surface acoustic waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467 (2130), 1779- 1800 (2011) |
28 | AI, Y., SANDERS, C. K., and MARRONE, B. L. Separation of escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Analytical Chemistry, 85 (19), 9126- 9134 (2013) |
29 | HU, J. Ultrasonic Micro/Nano Manipulations: Principles and Examples, World Scientific, New Jersey (2014) |
30 | SKOV, N. R., SEHGAL, P., KIRBY, B. J., and BRUUS, H. Three-dimensional numerical modeling of surface-acoustic-wave devices: acoustophoresis of micro-and nanoparticles including streaming. Physical Review Applied, 12 (4), 044028 (2019) |
31 | MORGAN, D., and PAIGE, E. G. S. Propagation Effects and Materials, Academic Press, New York (2007) |
32 | JAZINI DORCHEH, F., and GHASSEMI, M. A discussion about the velocity distribution commonly used as the boundary condition in surface acoustic wave numerical simulations. Biomedical Microdevices, 25 (4), 42 (2023) |
33 | JIANG, Y., CHEN, J., XUAN, W., LIANG, Y., HUANG, X., CAO, Z., SUN, L., DONG, S., and LUO, J. Numerical study of particle separation through integrated multi-stage surface acoustic waves and modulated driving signals. Sensors, 23 (5), 2771 (2023) |
34 | LAI, T. W., TENNAKOON, T., CHAN, K. C., LIU, C. H., CHAO, C. Y. H., and FU, S. C. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. Ultrasonics, 136, 107126 (2024) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1539-1556. |
[2] | S. MONDAL, S. A. SAHU, K. K. PANKAJ. Transference of Love-type waves in a bedded structure containing a functionally graded material and a porous piezoelectric medium[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1083-1096. |
[3] | P. SINGH, A. CHATTOPADHYAY, A. K. SINGH. Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 317-334. |
[4] | P. ALAM, S. KUNDU, S. GUPTA. Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(9): 1313-1328. |
[5] | A. K. SINGH, A. DAS, A. RAY. Rayleigh-type wave propagation through liquid layer over corrugated substrate[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(6): 851-866. |
[6] | S. K. VISHWAKARMA, Runzhang XU. G-type dispersion equation under suppressed rigid boundary: analytic approach[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(4): 501-512. |
[7] | R. KUMAR;M.KAUR;S. C. RAJVANSHI. Wave propagation at interface of heat conducting micropolar solid and fluid media[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(7): 881-902. |
[8] | A. CHATTOPADHYAY S. GUPTA S. A. SAHU A. K. SINGH. Dispersion equation of magnetoelastic shear waves in irregular monoclinic layer[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(5): 571-586. |
[9] | S. GUPTA A. CHATTOPADHYAY D. K. MAJHI. Effect of rigid boundary on propagation of torsional surface waves in porous elastic layer[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 327-338. |
[10] | Rajneesh KUMAR Meenakshi PANCHAL. Response of loose bonding on reflection and transmission of elastic waves at interface between elastic solid and micropolar porous cubic crystal[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(5): 605-616. |
[11] | S.Gupta A.Chattopadhyay D.K.Majhi. Effect of irregularity on the propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 481-492. |
[12] | 张殿新;陶建华. 一种改善了非线性和色散性的Boussinesq方程模型[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(7): 897-908 . |
[13] | . Reflection for three-dimensional plane waves in triclinic crystalline medium[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(10): 1309-1318 . |
[14] | . RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(8): 1049-1059 . |
[15] | S. K. VISHWAKARMA, R. KAUR, T. R. PANIGRAHI. Torsional wave frequency in heterogeneous earth crust lying over dry sandy semi-infinite substratum[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(10): 1399-1412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||