Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (6): 983-1000.doi: https://doi.org/10.1007/s10483-024-3125-8
收稿日期:
2024-01-18
出版日期:
2024-06-03
发布日期:
2024-06-01
Xiaoyang SU1,2,3, Tong HU1, Wei ZHANG1,2,3,*(), Houjun KANG1,2,3, Yunyue CONG1,2,3, Quan YUAN1
Received:
2024-01-18
Online:
2024-06-03
Published:
2024-06-01
Contact:
Wei ZHANG
E-mail:sandyzhang9@163.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 983-1000.
Xiaoyang SU, Tong HU, Wei ZHANG, Houjun KANG, Yunyue CONG, Quan YUAN. Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 983-1000.
1 | KIEBACK, B., ANDNEUBRAND, A., and RIEDEL, H. Processing techniques for functionally graded materials. Materials Science and Engineering A-Structural Materials: Properties, Microstructure and Processing, 362 (1-2), 81- 106 (2003) |
2 | LI, X. F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. Journal of Sound and Vibration, 318 (4-5), 1210- 1229 (2008) |
3 | CHAKRABORTY, A., GOPALAKRISHNAN, S., and REDDY, J. N. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45 (3), 519- 539 (2003) |
4 | ALSHORBAGY, A. E., ELTAHER, M. A., and MAHMOUD, F. F. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35 (1), 412- 425 (2011) |
5 | PRADHAN, K. K., and CHAKRAVERTY, S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51, 175- 184 (2013) |
6 |
SU, Z., WANG, L. F., SUN, K. P., and SUN, J. Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams. Applied Mathematics and Mechanics (English Edition), 41 (9), 1303- 1320 (2020)
doi: 10.1007/s10483-020-2662-6 |
7 |
PENG, W., CHEN, L. K., and HE, T. H. Nonlocal thermoelastic analysis of a functionally graded material microbeam. Applied Mathematics and Mechanics (English Edition), 42 (6), 855- 870 (2021)
doi: 10.1007/s10483-021-2742-9 |
8 | MAO, X. Y., JING, J., DING, H., and CHEN, L. Q. Dynamics of axially functionally graded pipes conveying fluid. Nonlinear Dynamics, 111, 1- 22 (2023) |
9 | YAN, T., YANG, T., and CHEN, L. Q. Direct multiscale analysis of stability of an axially moving functionally graded beam with time-dependent velocity. Acta Mechanica Solida Sinica, 33, 150- 163 (2020) |
10 | SUDDOUNG, K., CHAROENSUK, J., and WATTANASAKULPONG, N. Application of the differential transformation method to vibration analysis of stepped beams with elastically constrained ends. Journal of Vibration and Control, 19 (16), 2387- 2400 (2013) |
11 | DONG, X. J., MENG, G., LI, H. G., and YE, L. Vibration analysis of a stepped laminated composite Timoshenko beam. Mechanics Research Communications, 32 (5), 572- 581 (2005) |
12 | MAO, Q., and ANDPIETRZKO, S. Free vibration analysis of stepped beams by using Adomain decomposition method. Applied Mathematics and Computation, 217 (7), 3429- 3441 (2010) |
13 | ZHANG, J., QU, D., FANG, Z., and SHU, C. Optimization of a piezoelectric wind energy harvester with a stepped beam. Journal of Mechanical Science and Technology, 34, 4357- 4366 (2020) |
14 | MA, G. L., XU, M. L., CHEN, L. Q., and AN, Z. Y. Transverse free vibration of axially moving stepped beam with different length and tip mass. Shock and Vibration, 2015, 507581 (2015) |
15 |
CAO, D. X., and GAO, Y. H. Free vibration of non-uniform axially functionally graded beams using the asymptotic development method. Applied Mathematics and Mechanics (English Edition), 40 (1), 85- 96 (2019)
doi: 10.1007/s10483-019-2402-9 |
16 | SUDDOUNG, K., CHAROENSUK, J., and WATTANASAKULPONG, N. Vibration response of stepped FGM beams with elastically end constraints using differential transformation method. Applied Acoustics, 77, 20- 28 (2014) |
17 | WATTANASAKULPONG, N., and CHAROENSUK, J. Vibration characteristics of stepped beams made of FGM using differential transformation method. Meccanica, 50, 1089- 1101 (2015) |
18 | WANG, X. W., and WANG, Y. L. Free vibration analysis of multiple-stepped beams by the differential quadrature element method. Applied Mathematics and Computation, 219 (11), 5802- 5810 (2013) |
19 | BAMBILL, D. V., ROSSIT, C. A., and FELIX, D. H. Free vibrations of stepped axially functionally graded Timoshenko beams. Meccanica, 50, 1073- 1087 (2015) |
20 | SU, Z., JIN, G. Y., and YE, T. G. Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions. Composite Structures, 186, 315- 323 (2018) |
21 | KIM, K., KWAK, S., JANG, P., JUHYOK, U., and PANG, K. Free vibration analysis of a multi-stepped functionally graded curved beam with general boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236 (11), 5916- 5939 (2022) |
22 | RUI, X. T., HE, B., LU, Y. Q., LU, W. G., and WANG, G. P. Discrete time transfer matrix method for multibody system dynamics. Multibody System Dynamics, 14, 317- 344 (2005) |
23 | RONG, B., RUI, X. T., and WANG, G. P. Modified finite element transfer matrix method for eigenvalue problem of flexible structures. Journal of Applied Mechanics, 78, 021016 (2011) |
24 | SU, X. Y., KANG, H. J., GUO, T. D., and CONG, Y. Y. Dynamic analysis of the in-plane free vibration of a multi-cable-stayed beam with transfer matrix method. Archive of Applied Mechanics, 89, 2431- 2448 (2019) |
25 | SU, X. Y., KANG, H. J., GUO, T. D., and CONG, Y. Y. Modeling and parametric analysis of in-plane free vibration of a floating cable-stayed bridge with transfer matrix method. International Journal of Structural Stability and Dynamics, 20 (1), 2050004 (2020) |
26 | SU, X. Y., KANG, H. J., and GUO, T. D. A novel modeling method for in-plane eigenproblem estimation of the cable-stayed bridges. Applied Mathematical Modelling, 87, 245- 268 (2020) |
27 | BOIANGIU, M., CEAUSU, V., and UNTAROIU, C. D. A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section. Journal of Vibration and Control, 22 (11), 2591- 2602 (2016) |
28 | ATTAR, M. A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. International Journal of Mechanical Sciences, 57 (1), 19- 33 (2012) |
[1] | Dan ZHANG, Liangping YI, Zhaozhong YANG, Jingqiang ZHANG, Gang CHEN, Ruoyu YANG, Xiaogang LI. A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 911-930. |
[2] | Boyang DING, A. H. D. CHENG, Zhanglong CHEN. Decoupling coefficients of dilatational wave for Biot's dynamic equation and its Green's functions in frequency domain[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(1): 121-136. |
[3] | Guoxin JIN, Zhenghao WANG, Tianzhi YANG. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 813-824. |
[4] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[5] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[6] | Rongzhou LIN, Lei HOU, Yi CHEN, Yuhong JIN, N. A. SAEED, Yushu CHEN. A novel adaptive harmonic balance method with an asymptotic harmonic selection[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1887-1910. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||