Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (8): 1279-1294.doi: https://doi.org/10.1007/s10483-024-3137-8
• • 下一篇
收稿日期:
2023-12-26
出版日期:
2024-08-03
发布日期:
2024-07-31
Xinyu LIAN1, Bing LIU1, Huaxia DENG1,2,*(), Xinglong GONG1,3
Received:
2023-12-26
Online:
2024-08-03
Published:
2024-07-31
Contact:
Huaxia DENG
E-mail:hxdeng@ustc.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1279-1294.
Xinyu LIAN, Bing LIU, Huaxia DENG, Xinglong GONG. A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1279-1294.
1 | CHEN, S. B., XUAN, M., XIN, J., LIU, Y., GU, S., LI, J., and ZHANG, L. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel. International Journal of Mechanical Sciences, 179, 105592 (2020) |
2 | YUE, R. G., WANG, H. M., JIN, T., GAO, Y. T., SUN, X. F., YAN, T. F., ZANG, J., YIN, K., and WANG, S. T. Image motion measurement and image restoration system based on an inertial reference laser. Sensors, 21, 3309 (2021) |
3 | DENG, T. C., WEN, G. L., DING, H., LU, Z. Q., and CHEN, L. Q. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems and Signal Processing, 145, 106967 (2020) |
4 | PREUMONT, A., HORODINCA, M., ROMANESCU, I., DE MARNEFFE, B., AVRAAM, M., DERAEMAEKER, A., BOSSENS, F., and ABU HANIEH, A. A six-axis single-stage active vibration isolator based on Stewart platform. Journal of Sound and Vibration, 300, 644- 661 (2007) |
5 | YANG, X. L., WU, H. T., LI, Y., and CHEN, B. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform. Mechanism and Machine Theory, 117, 244- 252 (2017) |
6 | WANG, X., WU, H. M., and YANG, B. T. Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform. Mechanical Systems and Signal Processing, 139, 106606 (2020) |
7 | ZHANG, Z., AGLIETTI, G. S., and ZHOU, W. Y. Microvibrations induced by a cantilevered wheel assembly with a soft-suspension system. AIAA Journal, 49 (5), 1067- 1079 (2011) |
8 | YU, T. H., ZHANG, C., HUANG, Z. Q., HUANG, W. Y., WANG, S. Y., ZHONG, G. Q., and OU, D. T. Experimental and numerical studies of a novel three-dimensional isolation device incorporating disc springs with U-shaped dampers. Soil Dynamics and Earthquake Engineering, 174, 108164 (2023) |
9 | VAILLON, L., SANCTORUM, B., SPERANDEI, J., DEFENDINI, A., GRISERI, G., VON ALBERTI, M., and SPANOUDAKIS, P. Flight prototyping of active control of vibration & very high accuracy pointing systems. Proceedings of the 5th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, European Space Agency, Italy, 599–602 (2003) |
10 | LIU, J. G., LI, Y. M., ZHANG, Y., GAO, Q., and ZUO, B. Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dynamics, 76, 1737- 1751 (2014) |
11 | ZHAO, W., LI, B., LIU, P., and LIU, K. F. Semi-active control for a multi-dimensional vibration isolator with parallel mechanism. Journal of Vibration and Control, 19 (6), 879- 888 (2013) |
12 | HAO, Z. F., and CAO, Q. J. A novel dynamical model for GVT nonlinear supporting system with stable-quasi-zero-stiffness. Journal of Theoretical and Applied Mechanics, 52 (1), 199- 213 (2014) |
13 | HAO, Z. F., and CAO, Q. J. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound and Vibration, 340, 61- 79 (2015) |
14 | XIA, S. H., WANG, N. F., CHEN, B. C., ZHANG, X. M., and CHEN, W. Nonlinear stiffness mechanism designed by topology optimization reduces backpack vibration. International Journal of Mechanical Sciences, 252, 108345 (2023) |
15 | LI, H., BI, K. M., and HAO, H. Effect of negative stiffness nonlinearity on the vibration control effectiveness of tuned negative stiffness inerter damper. Engineering Structures, 293, 116641 (2023) |
16 | YU, C. Y., JIANG, Q. B., FU, Q. D., YU, K. F., ZHANG, J. R., and ZHANG, N. The X-shaped structure with nonlinear positive stiffness compensation for low-frequency vibration isolation. International Journal of Mechanical Sciences, 259, 108598 (2023) |
17 | STABILE, A., AGLIETTI, G., RICHARDSON, G., and SMET, G. A 2-collinear-DOF strut with embedded negative-resistance electromagnetic shunt dampers for spacecraft micro-vibration. Smart Materials and Structures, 26 (4), 045031 (2017) |
18 | SUN, X. Q., YANG, B. T., ZHAO, L., and SUN, X. F. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound and Vibration, 374, 43- 60 (2016) |
19 | ZHOU, N., and LIU, K. A tunable high-static-low-dynamic stiffness vibration isolator. Journal of Sound and Vibration, 329 (9), 1254- 1273 (2010) |
20 | SHAW, A. D., NEILD, S. A., and WAGG, D. J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. Journal of Sound and Vibration, 332 (6), 1437- 1455 (2013) |
21 | LIU, T., BI, S. S., YAO, Y. B., DONG, Z. H., YANG, Q. Z., and LIU, L. Research on zero-stiffness flexure hinge (ZSFH) based on spring four-bar linkage (4BSL). Mechanism and Machine Theory, 143, 103633 (2020) |
22 | DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675- 688 (2019) |
23 | WANG, Q., ZHOU, J. X., XU, D. L., and OUYANG, H. J. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mechanical Systems and Signal Processing, 139, 106633 (2020) |
24 |
MAO, X. Y., YIN, M. M., DING, H., GENG, X. F., SHEN, Y. J., and CHEN, L. Q. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators. Applied Mathematics and Mechanics (English Edition), 43 (7), 1027- 1044 (2022)
doi: 10.1007/s10483-022-2871-6 |
25 | CAREELLA, A., BRENNAN, M. J., KOVACIC, I., and WATERS, T. P. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. Journal of Sound and Vibration, 322 (4), 707- 717 (2009) |
26 | LU, J. J., YAN, G., QI, W. H., YAN, H., LIU, F. R., ZHAO, T. Y., and ZHANG, W. M. Integrated vibration isolation and actuation via dual nonlinear stiffness regulation. International Journal of Mechanical Sciences, 263, 108760 (2023) |
27 | LIU, C., ZHANG, W., YU, K., LIU, T., and ZHENG, Y. Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation. Mechanism and Machine Theory, 181, 105213 (2023) |
28 | MOLYNEUX, W. G. Supports for Vibration Isolation, Aeronautical Research Council, Great Britain (1957) |
29 | ALABUZHEV, P. M. Vibration Protection and Measuring Systems with Quasi-Zero Stiffness, CRC Press, U. S. A. (1989) |
30 | KOVACIC, I., BRENNAN, M. J., and WATERS, T. P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315 (3), 700- 711 (2008) |
31 | CARRELLA, A., FRISWELL, M. I., ZOTOV, A., EWINS, D. J., and TICHONOV, A. Using nonlinear springs to reduce the whirling of a rotating shaft. Mechanical Systems and Signal Processing, 23 (7), 2228- 2235 (2009) |
32 | LAN, C. C., YANG, S. A., and WU, Y. S. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333 (20), 4843- 4858 (2014) |
33 | HUANG, X., LIU, X., SUN, J., ZHANG, Z., and HUA, H. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. Journal of Sound and Vibration, 333 (4), 1132- 1148 (2014) |
34 | HAO, Z., CAO, Q., and WIERCIGROCH, M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 87, 987- 1014 (2017) |
35 | ARAKI, Y., KIMURA, K., ASAI, T., MASUI, T., OMORI, T., and KAINUMA, R. Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars. Journal of Sound and Vibration, 358, 74- 83 (2015) |
36 | DING, H., and CHEN, L. Q. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 95 (3), 2367- 2382 (2019) |
37 | HUANG, X., LIU, X., SUN, J., ZHANG, Z., and HUA, H. Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dynamics, 76 (2), 1157- 1167 (2014) |
38 | TAGHIPOUR, J., DARDEL, M., and PASHAEI, M. H. Vibration mitigation of a nonlinear rotor system with linear and nonlinear vibration absorbers. Mechanism and Machine Theory, 128, 586- 615 (2018) |
39 | LI, M., LI, J. Y., FU, K. J., YE, A. N., XIAO, Y., MA, X. F., REN, G. X., and ZHAO, Z. H. Harnessing noncircular gears to achieve nonlinear passive springs. Mechanism and Machine Theory, 140, 434- 445 (2019) |
40 | TUO, J., DENG, Z., HUANG, W., and ZHANG, H. A six degree of freedom passive vibration isolator with quasi-zero-stiffness-based supporting. Journal of Low Frequency Noise, Vibration and Active Control, 37 (2), 279- 294 (2018) |
41 | IBRAHIM, R. A. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314, 371- 452 (2008) |
42 | SHAW, A. D., NEILD, S. A., and FRISWELL, M. I. Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. Journal of Sound and Vibration, 339, 84- 98 (2015) |
43 | HAO, Z., CAO, Q., and WIERCIGROCH, M. Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 86, 2129- 2144 (2016) |
44 | LIU, X. C., DING, H., GENG, X. F., WEI, K. X., LAI, S. K., and CHEN, L. Q. A magnetic nonlinear energy sink with quasi-zero stiffness characteristics. Nonlinear Dynamics, 112 (8), 5895- 5918 (2024) |
45 | SHAN, S. C., KANG, S. H., RANEY, J. R., WANG, P., FANG, L. C., CANDIDO, F., LEWIS, J. A., and BERTOLDI, K. Multistable architected materials for trapping elastic strain energy. Advanced Materials, 27 (29), 4296- 4301 (2015) |
46 | QIU, J., LANG, J. H., and SLOCUM, A. H. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 13 (2), 137- 146 (2004) |
[1] | Jinghu TANG, Chaofeng LI, Jin ZHOU, Zhiwei WU. Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 873-890. |
[2] | Jianxun ZHANG, Jinwen BAI. A novel efficient energy absorber with free inversion of a metal foam-filled circular tube[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 1-14. |
[3] | M. GRYGOROWICZ, E. MAGNUCKA-BLANDZI. Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1361-1374. |
[4] | V. FILIPOVIC. Global exponential stability of switched systems[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(9): 1197-1206. |
[5] | 刘新建;袁天保. TVC飞行器的新型滚动飞行控制研究[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(6): 725-730 . |
[6] | 贺元军;马兴瑞;王本利. null[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(10): 1273-1285 . |
[7] | 陈永秋;刘玉岚;王彪. MINIMUM SIZE OF 180 DEGREE DOMAINS IN FERROELECTRIC THIN FILMS COVERED BY ELECTRODES[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(8): 1031-1036 . |
[8] | 郑惠萍;薛禹胜;陈予恕. QUANTITATIVE METHODOLOGY FOR STABILITY ANALYSIS OF NONLINEAR ROTOR SYSTEMS[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(9): 1138-1145 . |
[9] | Jianxun ZHANG, Haoyuan GUO. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1733-1742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||