Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (7): 1119-1138.doi: https://doi.org/10.1007/s10483-024-3162-8
收稿日期:
2024-03-22
出版日期:
2024-07-03
发布日期:
2024-06-29
Chao WANG, Honggang ZHAO*(), Yang WANG, Jie ZHONG, Dianlong YU, Jihong WEN
Received:
2024-03-22
Online:
2024-07-03
Published:
2024-06-29
Contact:
Honggang ZHAO
E-mail:zhhg9603@sina.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1119-1138.
Chao WANG, Honggang ZHAO, Yang WANG, Jie ZHONG, Dianlong YU, Jihong WEN. Topology optimization of chiral metamaterials with application to underwater sound insulation[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1119-1138.
1 | WU, K., LIU, J., DING, Y., WANG, W., LIANG, B., and CHENG, J. Metamaterial-based real-time communication with high information density by multipath twisting of acoustic wave. Nature Communications, 13, 5171 (2022) |
2 | WANG, W., HU, C., NI, J., DING, Y., WENG, J., LIANG, B., QIU, C. W., and CHENG, J. C. Efficient and high-purity sound frequency conversion with a passive linear metasurface. Advanced Science, 9, 2203482 (2022) |
3 | REINHALL, P. G., and DAHL, P. H. Underwater Mach wave radiation from impact pile driving: theory and observation. The Journal of the Acoustical Society of America, 130, 1209- 1216 (2011) |
4 | AZEVEDO VASCONCELOS, A. C., VALIYA VALAPPIL, S., SCHOTT, D., JOVANOVA, J., and ARAGÓN, A. M. A metamaterial-based interface for the structural resonance shielding of impact-driven offshore monopiles. Engineering Structures, 300, 117261 (2024) |
5 | LEROY, V., STRYBULEVYCH, A., LANOY, M., LEMOULT, F., TOURIN, A., and PAGE, J. H. Super-absorption of acoustic waves with bubble meta-screens. Physical Review B, 91, 020301 (2015) |
6 | YANG, H., XIAO, Y., ZHAO, H., ZHONG, J., and WEN, J. On wave propagation and attenuation properties of underwater acoustic screens consisting of periodically perforated rubber layers with metal plates. Journal of Sound and Vibration, 444, 21- 34 (2019) |
7 | LANOY, M., GUILLERMIC, R. M., STRYBULEVYCH, A., and PAGE, J. H. Broadband coherent perfect absorption of acoustic waves with bubble meta-screens. Applied Physics Letters, 113 (17), 171901- 171907 (2018) |
8 | WANG, Y., ZHAO, H., YANG, H., LIU, J., YU, D., and WEN, J. Topological design of lattice materials with application to underwater sound insulation. Mechanical Systems and Signal Processing, 171, 108911 (2022) |
9 | GAO, N., DONG, Z., MAK, H. Y., and SHENG, P. Manipulation of low-frequency sound with a tunable active metamaterial panel. Physical Review Applied, 17 (4), 044037 (2022) |
10 | HOPKINS, C. Sound Insulation, Butterworth-Heinemann, Oxford (2007) |
11 | CHEN, Y., ZHENG, M., LIU, X., BI, Y., SUN, Z., XIANG, P., YANG, J., and HU, G. Broadband solid cloak for underwater acoustics. Physical Review B, 95 (18), 180101- 180104 (2017) |
12 | SHARMA, G. S., SKVORTSOV, A., MACGILLIVRAY, I., and KESSISSOGLOU, N. Sound transmission through a periodically voided soft elastic medium submerged in water. Wave Motion, 70, 101- 112 (2017) |
13 | CALVO, D. C., THANGAWNG, A. L., LAYMAN, C. N., J, R., CASALINI, R., and OTHMAN, S. F. Underwater sound transmission through arrays of disk cavities in a soft elastic medium. The Journal of the Acoustical Society of America, 138 (4), 2537- 2547 (2015) |
14 | LEROY, V., STRYBULEVYCH, A., SCANLON, M. G., and PAGE, J. H. Transmission of ultrasound through a single layer of bubbles. The European Physical Journal E, 29 (1), 123- 130 (2009) |
15 | ZHONG, H., TIAN, Y., GAO, N., LU, K., and WU, J. Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance. Composite Structures, 277, 114603 (2021) |
16 | CHEN, Y., ZHAO, B., LIU, X., and HU, G. Highly anisotropic hexagonal lattice material for low frequency water sound insulation. Extreme Mechanics Letters, 40, 100916 (2020) |
17 | WANG, Y., ZHAO, H., YANG, H., ZHANG, H., LI, T., WANG, C., LIU, J., ZHONG, J., YU, D., and WEN, J. Acoustically soft and mechanically robust hierarchical metamaterials in water. Physical Review Applied, 20 (5), 054015 (2023) |
18 | WU, W., HU, W., QIAN, G., LIAO, H., XU, X., and BERTO, F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Materials & Design, 180, 107950 (2019) |
19 | LIU, X. N., HUANG, G. L., and HU, G. K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. Journal of the Mechanics and Physics of Solids, 60 (11), 1907- 1921 (2012) |
20 | WANG, J., YANG, Q., WEI, Y., and TAO, R. A novel chiral metamaterial with multistability and programmable stiffness. Smart Materials and Structures, 30 (6), 65006 (2021) |
21 | YIN, Y., ZHAO, Z., and LI, Y. Theoretical and experimental research on anisotropic and nonlinear mechanics of periodic network materials. Journal of the Mechanics and Physics of Solids, 152, 104458 (2021) |
22 | FU, M., LIU, F., and HU, L. A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology, 160 (26), 111- 118 (2018) |
23 | WANG, X., QIN, R., LU, J., HUANG, M., ZHANG, X., and CHEN, B. Laser additive manufacturing of hierarchical multifunctional chiral metamaterial with distinguished damage-resistance and low-frequency broadband sound-absorption capabilities. Materials & Design, 238, 112659 (2024) |
24 | QI, D., LU, Q., HE, C., LI, Y., WU, W., and XIAO, D. Impact energy absorption of functionally graded chiral honeycomb structures. Extreme Mechanics Letters, 32, 100568 (2019) |
25 | SPADONI, A., RUZZENE, M., GONELLA, S., and SCARPA, F. Phononic properties of hexagonal chiral lattices. Wave Motion, 46 (7), 435- 450 (2009) |
26 | SPADONI, A., and RUZZENE, M. Structural and acoustic behavior of chiral truss-core beams. Journal of Vibration and Acoustics-Transactions of the ASME, 128 (5), 616- 626 (2006) |
27 | AN, X., LAI, C., HE, W., and FAN, H. Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression and sound absorption. Composites Part B: Engineering, 224, 109232 (2021) |
28 | YANG, H., CHENG, S., LI, X., YAN, Q., WANG, B., XIN, Y., SUN, Y., DING, Q., YAN, H., LI, Y., and ZHAO, Q. Study on bandgap and vibration attenuation mechanism of novel chiral lattices. Physica B: Condensed Matter, 651, 414596 (2023) |
29 | LI, Z., ZHAI, W., LI, X., YU, X., GUO, Z., and WANG, Z. Additively manufactured dual-functional metamaterials with customisable mechanical and sound-absorbing properties. Virtual and Physical Prototyping, 17 (4), 864- 880 (2022) |
30 | BENDSØE, M. P., and SIGMUND, O. Topology Optimization: Theory, Method and Applications, Springer Berlin, Heidelberg (2003) |
31 | DONG, H. W., ZHAO, S. D., MIAO, X. B., SHEN, C., and CHENG, L. Customized broadband pentamode metamaterials by topology optimization. Journal of the Mechanics and Physics of Solids, 152 (2), 104407 (2021) |
32 | DONG, H., ZHAO, S., OUDICH, M., SHEN, C., ZHANG, C., CHENG, L., WANG, Y., and FANG, D. Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption. Physical Review Applied, 17 (4), 044013 (2022) |
33 | KIM, K. H., and YOON, G. H. Acoustic topology optimization using moving morphable components in neural network-based design. Structural and Multidisciplinary Optimization, 65 (2), 47 (2022) |
34 | BOKHARI, A. H., MOUSAVI, A., NIU, B., and WADBRO, E. Topology optimization of an acoustic diode?. Structural and Multidisciplinary Optimization, 63 (6), 2739- 2749 (2021) |
35 | ZHENG, W., YANG, T., HUANG, Q., and HE, Z. Topology optimization of PCLD on plates for minimizing sound radiation at low frequency resonance. Structural and Multidisciplinary Optimization, 53 (6), 1231- 1242 (2016) |
36 | LU, L., YAMAMOTO, T., OTOMORI, M., YAMADA, T., IZUI, K., and NISHIWAKI, S. Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance. Finite Elements in Analysis and Design, 72, 1- 12 (2013) |
37 | CHRISTIANSEN, R. E., and SIGMUND, O. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction. Applied Physics Letters, 109 (10), 101905 (2016) |
38 | WANG, G., HU, J., XIANG, L., SHI, M., and LUO, G. Topology-optimized ventilation barrier for mid-to-high frequency ultrabroadband sound insulation. Applied Acoustics, 202, 109145 (2023) |
39 | ZHANG, W., YUAN, J., ZHANG, J., and GUO, X. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 53 (6), 1243- 1260 (2016) |
40 | SHA, W., HU, R., XIAO, M., CHU, S., ZHU, Z., QIU, C., and GAO, L. Topology-optimized thermal metamaterials traversing full-parameter anisotropic space. NPJ Computational Materials, 8 (1), 1- 10 (2022) |
41 | BENDSØE, M. P. Optimal shape design as a material distribution problem. Structural and Multidisciplinary Optimization, 1 (4), 193- 202 (1989) |
42 | BLAISE, B., and AN, X. Filters in topology optimization. International Journal for Numerical Methods in Engineering, 50 (9), 2143- 2158 (2001) |
43 | WANG, F., LAZAROV, B. S., and SIGMUND, O. On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 43 (6), 767- 784 (2011) |
44 | SVANBERG, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization, 12 (2), 555- 573 (2002) |
45 | CHENG, G., CAI, Y., and XU, L. Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mechanica Sinica, 29 (4), 550- 556 (2013) |
46 | ZHAO, B., WANG, D., ZHOU, P., LIU, X., and HU, G. Design of load-bearing materials for isolation of low-frequency waterborne sound. Physical Review Applied, 17 (3), 034065 (2022) |
47 | WANG, K., CAI, M., ZHOU, P., and HU, G. Homogenization in a simpler way: analysis and optimization of periodic unit cells with Cauchy-Born hypothesis. Structural and Multidisciplinary Optimization, 64 (6), 3911- 3935 (2021) |
48 | HASHIN, Z., and SHTRIKMAN, S. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11 (2), 127- 140 (1963) |
49 | ASTM E2611-09. Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on Transfer Matrix Method, American Society for Testing and Materials, New York (2009) |
[1] | Meiqi WU, Pengyu LV, Hongyuan LI, Jiale YAN, Huiling DUAN, Wei ZHANG. Theoretical and experimental investigation of the resonance responses and chaotic dynamics of a bistable laminated composite shell in the dynamic snap-through mode[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 581-602. |
[2] | Qi LI, Fushun LIU, Bin WANG, D. Z. LIU, Zhenghua QIAN. A novel physics-informed framework for reconstruction of structural defects[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1717-1730. |
[3] | Jun HONG, Zhuangzhuang HE, Gongye ZHANG, Changwen MI. Size and temperature effects on band gaps in periodic fluid-filled micropipes[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1219-1232. |
[4] | K. DANESHJOU H. RAMEZANI R. TALEBITOOTI. Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(6): 701-718. |
[5] | 冯侃 励争 高桂云 苏先越. Damage detection method in complicated beams with varying flexural stiffness[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(4): 469-478. |
[6] | 韩峰 王光政 康朝阳. Scattering of SH-waves on triangular hill joined by semi-cylindrical canyon[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 309-326. |
[7] | 胡杨凡;王彪. 压电压磁复合材料中二维散射问题的解析研究[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(12): 1535-1552 . |
[8] | 张红艳;沈亚鹏;尹冠生. Lateral resonances in initial stressed 1-3 piezocomposites[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(7): 873-881 . |
[9] | 张培伟;周振功;王彪. Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(5): 615-625 . |
[10] | 周振功;王彪. Basic solution of two parallel non-symmetric permeable cracks in piezoelectric materials[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(4): 417-428 . |
[11] | 周振功;王彪. INVESTIGATION OF BEHAVIOR OF MODE-I INTERFACE CRACK IN PIEZOELECTRIC MATERIALS BY USING SCHMIDT METHOD[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(7): 871-882 . |
[12] | 李琳;周振功;王彪. SCATTERING OF ANTI-PLANE SHEAR WAVES IN A FUNCTIONALLY GRADED MATERIAL STRIP WITH AN OFF-CENTER VERTICAL CRACK[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(6): 731-739 . |
[13] | 周振功;王彪. DYNAMIC BEHAVIOR OF TWO PARALLEL SYMMETRY CRACKS IN MAGNETO-ELECTRO-ELASTIC COMPOSITES UNDER HARMONIC ANTI-PLANE WAVES[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(5): 583-591 . |
[14] | 杨瑞梁;汪鸿振. A NOVEL ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(2): 261-268 . |
[15] | 周振功;王彪. SCATTERING OF HARMONIC ANTI-PLANE SHEAR WAVES BY AN INTERFACE CRACK IN MAGNETO-ELECTRO-ELASTIC COMPOSITES[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(1): 17-26 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||