Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (1): 81-100.doi: https://doi.org/10.1007/s10483-025-3200-7
收稿日期:
2024-07-05
修回日期:
2024-11-22
出版日期:
2025-01-03
发布日期:
2025-01-06
S. SAURABH, R. KIRAN†(), D. SINGH, R. VAISH, V. S. CHAUHAN
Received:
2024-07-05
Revised:
2024-11-22
Online:
2025-01-03
Published:
2025-01-06
Contact:
R. KIRAN
E-mail:raj@iitmandi.ac.in
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100.
S. SAURABH, R. KIRAN, D. SINGH, R. VAISH, V. S. CHAUHAN. A comprehensive investigation on nonlinear vibration andbending characteristics of bio-inspired helicoidallaminated composite structures[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100.
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
10 | 10 | HR1 | 1.044 7 | 1.181 5 | 1.382 4 | 1.428 3 | 1.535 5 |
HR2 | 1.044 7 | 1.175 9 | 1.370 5 | 1.411 5 | 1.506 2 | ||
HR3 | 1.044 7 | 1.171 7 | 1.360 8 | 1.401 7 | 1.493 2 | ||
HE1 | 1.044 7 | 1.182 3 | 1.384 1 | 1.436 3 | 1.553 9 | ||
HE2 | 1.044 7 | 1.178 1 | 1.375 5 | 1.430 4 | 1.537 2 | ||
HE3 | 1.044 7 | 1.170 3 | 1.359 0 | 1.422 7 | 1.519 8 | ||
HS1 | 1.044 7 | 1.143 5 | 1.302 5 | 1.498 9 | 1.450 5 | ||
HS2 | 1.044 7 | 1.170 8 | 1.357 3 | 1.585 6 | 1.519 3 | ||
HS3 | 1.044 7 | 1.167 5 | 1.351 3 | 1.577 3 | 1.589 1 | ||
LH1 | 1.044 7 | 1.176 9 | 1.372 9 | 1.418 1 | 1.513 5 | ||
LH2 | 1.044 7 | 1.173 7 | 1.366 1 | 1.411 0 | 1.501 0 | ||
LH3 | 1.044 7 | 1.170 4 | 1.359 1 | 1.404 7 | 1.490 9 | ||
FH | 1.044 4 | 1.169 3 | 1.355 8 | 1.401 2 | 1.490 8 | ||
QI | 1.042 8 | 1.162 7 | 1.340 9 | 1.559 3 | 1.573 4 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
10 | 100 | HR1 | 1.030 8 | 1.140 5 | 1.298 6 | 1.497 5 | 1.483 2 |
HR2 | 1.030 8 | 1.133 7 | 1.284 6 | 1.474 5 | 1.456 2 | ||
HR3 | 1.030 8 | 1.127 4 | 1.271 5 | 1.452 8 | 1.436 0 | ||
HE1 | 1.030 8 | 1.141 4 | 1.300 5 | 1.500 6 | 1.495 4 | ||
HE2 | 1.030 8 | 1.136 8 | 1.291 1 | 1.485 4 | 1.488 0 | ||
HE3 | 1.030 8 | 1.128 3 | 1.273 5 | 1.456 6 | 1.476 2 | ||
HS1 | 1.030 8 | 1.100 3 | 1.215 0 | 1.360 7 | 1.529 3 | ||
HS2 | 1.030 8 | 1.123 0 | 1.261 0 | 1.433 5 | 1.630 6 | ||
HS3 | 1.030 8 | 1.123 8 | 1.263 0 | 1.437 3 | 1.636 8 | ||
LH1 | 1.030 8 | 1.135 4 | 1.288 3 | 1.480 8 | 1.469 9 | ||
LH2 | 1.030 8 | 1.131 8 | 1.280 8 | 1.468 6 | 1.459 4 | ||
LH3 | 1.030 8 | 1.128 1 | 1.273 0 | 1.455 8 | 1.449 4 | ||
FH | 1.032 4 | 1.124 8 | 1.265 9 | 1.443 8 | 1.435 1 | ||
QI | 1.030 8 | 1.118 5 | 1.252 0 | 1.419 4 | 1.610 9 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
40 | 10 | HR1 | 1.074 6 | 1.285 7 | 1.262 7 | 1.488 1 | 1.489 2 |
HR2 | 1.072 7 | 1.276 6 | 1.261 8 | 1.518 5 | 1.529 3 | ||
HR3 | 1.071 9 | 1.271 0 | 1.277 8 | 1.578 5 | 1.579 5 | ||
HE1 | 1.074 5 | 1.285 9 | 1.273 5 | 1.482 4 | 1.501 6 | ||
HE2 | 1.072 2 | 1.276 6 | 1.272 2 | 1.494 8 | 1.501 6 | ||
HE3 | 1.068 0 | 1.259 1 | 1.281 5 | 1.544 5 | 1.501 6 | ||
HS1 | 1.054 7 | 1.205 1 | 1.271 6 | 1.327 2 | 1.501 6 | ||
HS2 | 1.068 5 | 1.255 3 | 1.352 2 | 1.399 1 | 1.501 6 | ||
HS3 | 1.064 1 | 1.240 8 | 1.394 7 | 1.466 4 | 1.501 6 | ||
LH1 | 1.072 3 | 1.276 3 | 1.254 4 | 1.496 7 | 1.501 6 | ||
LH2 | 1.070 8 | 1.270 2 | 1.253 3 | 1.512 6 | 1.501 6 | ||
LH3 | 1.069 4 | 1.263 9 | 1.254 5 | 1.349 4 | 1.501 6 | ||
FH | 1.070 6 | 1.265 7 | 1.281 2 | 1.408 | 1.599 9 | ||
QI | 1.062 4 | 1.233 2 | 1.479 3 | 1.453 | 1.501 6 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
40 | 100 | HR1 | 1.041 5 | 1.162 1 | 1.198 2 | 1.257 1 | 1.450 0 |
HR2 | 1.038 8 | 1.151 0 | 1.196 7 | 1.252 9 | 1.326 8 | ||
HR3 | 1.036 4 | 1.141 2 | 1.201 9 | 1.260 2 | 1.334 6 | ||
HE1 | 1.042 0 | 1.163 9 | 1.205 7 | 1.268 7 | 1.449 2 | ||
HE2 | 1.040 3 | 1.156 8 | 1.215 9 | 1.278 1 | 1.366 1 | ||
HE3 | 1.037 1 | 1.144 0 | 1.310 0 | 1.295 3 | 1.364 2 | ||
HS1 | 1.027 0 | 1.104 5 | 1.223 9 | 1.375 3 | 1.349 6 | ||
HS2 | 1.035 5 | 1.135 9 | 1.286 8 | 1.474 0 | 1.686 6 | ||
HS3 | 1.035 7 | 1.136 7 | 1.289 0 | 1.478 6 | 1.694 7 | ||
LH1 | 1.039 6 | 1.154 2 | 1.202 9 | 1.258 5 | 1.327 9 | ||
LH2 | 1.038 1 | 1.148 4 | 1.204 8 | 1.258 3 | 1.322 3 | ||
LH3 | 1.036 7 | 1.142 6 | 1.207 4 | 1.259 2 | 1.320 5 | ||
FH | 1.035 5 | 1.137 6 | 1.208 8 | 1.268 6 | 1.344 1 | ||
QI | 1.033 2 | 1.127 1 | 1.269 3 | 1.446 6 | 1.648 7 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
10 | 10 | HR1 | 1.018 2 | 1.071 5 | 1.156 7 | 1.269 9 | 1.260 5 |
HR2 | 1.018 1 | 1.071 1 | 1.155 7 | 1.267 5 | 1.255 3 | ||
HR3 | 1.018 2 | 1.071 5 | 1.156 2 | 1.267 6 | 1.257 5 | ||
HE1 | 1.018 1 | 1.071 3 | 1.156 4 | 1.269 6 | 1.263 0 | ||
HE2 | 1.017 9 | 1.070 5 | 1.154 5 | 1.266 1 | 1.261 2 | ||
HE3 | 1.017 5 | 1.068 9 | 1.150 8 | 1.259 3 | 1.258 9 | ||
HS1 | 1.015 9 | 1.062 3 | 1.136 1 | 1.232 9 | 1.248 1 | ||
HS2 | 1.018 5 | 1.072 5 | 1.157 6 | 1.269 9 | 1.277 4 | ||
HS3 | 1.017 2 | 1.067 5 | 1.147 3 | 1.252 2 | 1.377 7 | ||
LH1 | 1.017 9 | 1.070 5 | 1.154 5 | 1.265 9 | 1.254 2 | ||
LH2 | 1.017 8 | 1.070 0 | 1.153 2 | 1.263 5 | 1.251 5 | ||
LH3 | 1.017 7 | 1.069 4 | 1.152 0 | 1.261 2 | 1.249 9 | ||
FH | 1.018 1 | 1.070 9 | 1.154 8 | 1.265 1 | 1.257 4 | ||
QI | 1.017 | 1.066 7 | 1.145 3 | 1.248 2 | 1.260 5 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
10 | 100 | HR1 | 1.010 2 | 1.040 4 | 1.089 3 | 1.155 1 | 1.235 9 |
HR2 | 1.009 1 | 1.039 1 | 1.086 5 | 1.150 1 | 1.228 2 | ||
HR3 | 1.009 6 | 1.038 0 | 1.083 8 | 1.145 5 | 1.220 9 | ||
HE1 | 1.010 3 | 1.040 7 | 1.090 0 | 1.156 4 | 1.237 9 | ||
HE2 | 1.010 2 | 1.040 2 | 1.088 9 | 1.154 4 | 1.234 7 | ||
HE3 | 1.009 9 | 1.039 2 | 1.086 6 | 1.150 3 | 1.228 3 | ||
HS1 | 1.008 7 | 1.034 5 | 1.076 1 | 1.131 9 | 1.200 0 | ||
HS2 | 1.010 3 | 1.040 6 | 1.089 0 | 1.153 4 | 1.231 1 | ||
HS3 | 1.010 1 | 1.039 9 | 1.087 7 | 1.151 3 | 1.228 5 | ||
LH1 | 1.010 0 | 1.039 6 | 1.087 5 | 1.152 1 | 1.231 2 | ||
LH2 | 1.009 9 | 1.039 0 | 1.086 2 | 1.149 6 | 1.227 4 | ||
LH3 | 1.009 7 | 1.038 3 | 1.084 7 | 1.147 0 | 1.223 4 | ||
FH | 1.009 5 | 1.037 6 | 1.083 1 | 1.144 2 | 1.219 0 | ||
QI | 1.010 0 | 1.039 3 | 1.086 3 | 1.148 9 | 1.224 5 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
40 | 10 | HR1 | 1.038 9 | 1.153 5 | 1.171 2 | 1.227 4 | 1.353 4 |
HR2 | 1.039 5 | 1.154 9 | 1.176 | 1.237 1 | 1.398 7 | ||
HR3 | 1.040 5 | 1.157 2 | 1.190 8 | 1.260 5 | 1.457 9 | ||
HE1 | 1.038 3 | 1.151 3 | 1.171 8 | 1.201 1 | 1.345 4 | ||
HE2 | 1.037 6 | 1.148 2 | 1.172 7 | 1.351 1 | 1.356 9 | ||
HE3 | 1.036 0 | 1.141 5 | 1.177 7 | 1.245 1 | 1.390 7 | ||
HS1 | 1.030 9 | 1.119 8 | 1.181 7 | 1.218 5 | 1.263 4 | ||
HS2 | 1.037 4 | 1.144 8 | 1.209 3 | 1.238 0 | 1.267 2 | ||
HS3 | 1.031 9 | 1.124 3 | 1.268 6 | 1.269 9 | 1.300 4 | ||
LH1 | 1.038 5 | 1.151 5 | 1.167 7 | 1.214 3 | 1.376 9 | ||
LH2 | 1.038 4 | 1.150 6 | 1.168 6 | 1.215 9 | 1.389 3 | ||
LH3 | 1.038 2 | 1.149 6 | 1.712 0 | 1.219 8 | 1.412 4 | ||
FH | 1.039 8 | 1.154 3 | 1.191 4 | 1.258 7 | 1.474 8 | ||
QI | 1.032 1 | 1.124 2 | 1.266 4 | 1.261 6 | 1.294 5 |
"
Layup configuration | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
---|---|---|---|---|---|---|---|
40 | 100 | HR1 | 1.010 7 | 1.042 7 | 1.096 4 | 1.092 6 | 1.117 5 |
HR2 | 1.010 2 | 1.040 8 | 1.091 7 | 1.091 4 | 1.114 3 | ||
HR3 | 1.009 8 | 1.039 0 | 1.087 2 | 1.094 4 | 1.117 9 | ||
HE1 | 1.010 8 | 1.043 2 | 1.097 6 | 1.095 8 | 1.122 9 | ||
HE2 | 1.010 6 | 1.042 4 | 1.095 5 | 1.099 9 | 1.125 8 | ||
HE3 | 1.010 2 | 1.040 8 | 1.091 3 | 1.111 0 | 1.135 7 | ||
HS1 | 1.008 5 | 1.003 6 | 1.074 3 | 1.129 3 | 1.196 7 | ||
HS2 | 1.010 8 | 1.042 5 | 1.093 2 | 1.160 2 | 1.241 1 | ||
HS3 | 1.010 4 | 1.041 2 | 1.090 6 | 1.156 3 | 1.236 0 | ||
LH1 | 1.010 4 | 1.041 6 | 1.093 5 | 1.093 9 | 1.117 0 | ||
LH2 | 1.010 2 | 1.040 6 | 1.091 2 | 1.094 6 | 1.116 7 | ||
LH3 | 1.009 9 | 1.039 6 | 1.088 8 | 1.096 0 | 1.117 3 | ||
FH | 1.009 7 | 1.038 5 | 1.086 0 | 1.097 9 | 1.122 2 | ||
QI | 1.010 3 | 1.040 5 | 1.088 9 | 1.153 2 | 1.230 8 |
[1] | DOINEAU, E., CATHALA, B., BENEZET, J. C., BRAS, J., and LE MOIGNE, N. Development of bio-inspired hierarchical fibres to tailor the fibre/matrix interphase in (bio)composites. Polymers, 13(5), 804 (2021) |
[2] | STUDART, A. R. Towards high-performance bioinspired composites. Advanced Materials, 24(37), 5024–5044 (2012) |
[3] | HA, N. S. and LU, G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496 (2020) |
[4] | WEGST, U. G. K., BAI, H., SAIZ, E., TOMSIA, A. P., and RITCHIE, R. O. Bioinspired structural materials. Nature Materials, 14(1), 23–36 (2014) |
[5] | BAR-ON, B., BAYERLEIN, B., BLUMTRITT, H., and ZLOTNIKOV, I. Dynamic response of a single interface in a biocomposite structure. Physical Review Letters, 115(23), 238001 (2015) |
[6] | CHEN, J., ZU, Q., WU, G., XIE, J., and TUO, W. Review of beetle forewing structures and their biomimetic applications in China: (II) on the three-dimensional structure, modeling and imitation. Materials Science and Engineering C: Materials for Biological Applications, 55, 620–633 (2015) |
[7] | MOHAMED, S. A., MOHAMED, N., and ELTAHER, M. A. Bending, buckling and linear vibration of bio-inspired composite plates. Ocean Engineering, 259, 111851 (2022) |
[8] | HEINEMANN, F., LAUNSPACH, M., GRIES, K., and FRITZ, M. Gastropod nacre: structure, properties and growth biological, chemical and physical basics. Biophysical Chemistry, 153(2-3), 126–153 (2011) |
[9] | SUKSANGPANYA, N., YARAGHI, N. A., KISAILUS, D., and ZAVATTIERI, P. Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 76, 38–57 (2017) |
[10] | MENCATTELLI, L. and PINHO, S. T. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage. Composites Science and Technology, 182 (2019) |
[11] | MILLIRON, G. W., KISAILUS, D., WU, J., and GARAY, J. University of California Riverside Lightweight Impact-Resistant Composite Materials: Lessons from Mantis Shrimp, Ph.D. dissertation, University of Californic (2012) |
[12] | TADAYON, M., AMINI, S., MASIC, A., and MISEREZ, A. The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Advanced Functional Materials, 25(41), 6437–6447 (2015) |
[13] | RAMAKRISHNA, D. and MURALI, G. B. Bio-inspired 3D-printed lattice structures for energy absorption applications: a review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials-Design and Applications, 237(3), 503–542 (2022) |
[14] | GARULLI, T., KATAFIASZ, T. J., GREENHALGH, E. S., and PINHO, S. T. A novel bio-inspired microstructure for improved compressive performance of multidirectional CFRP laminates. Composites Part B: Engineering, 264, 110867 (2023) |
[15] | CHOUHAN, G. and MURALI, G. B. Uniform and graded bio-inspired gyroid lattice: effects of post-curing and print orientation on mechanical property. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials-Design and Applications, 238(5), 810–828 (2024) |
[16] | GRUNENFELDER, L. K., SUKSANGPANYA, N., SALINAS, C., MILLIRON, G., YARAGHI, N., HERRERA, S., EVANS-LUTTEROOT, K., NUTT, S. R., ZAVATTIERI, P., and KISAILUS, D. Bio-inspired impact-resistant composites. Acta Biomater, 10(9), 3997–4008 (2014) |
[17] | CHENG, L., THOMAS, A., GLANCEY, J. L., and KARLSSON, A. M. Mechanical behavior of bio-inspired laminated composites. Composites Part A: Applied Science and Manufacturing, 42(2), 211–220 (2011) |
[18] | JIANG, H., REN, Y., LIU, Z., ZHANG, S., and LIN, Z. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle-based layups. Composite Structures, 214, 463–475 (2019) |
[19] | APICHATTRABRUT, T. and RAVI-CHANDAR, K. Helicoidal composites. Mechanics of Advanced Materials and Structures, 13(1), 61–76 (2006) |
[20] | HAZZARD, M. K., HALLETT, S., CURTIS, P. T., IANNUCCI, L., and TRASK, R. S. Effect of fibre orientation on the low velocity impact response of thin Dyneema composite laminates. International Journal of Impact Engineering, 100, 35–45 (2017) |
[21] | GINZBURG, D., PINTO, F., IERVOLINO, O., and MEO, M. Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Composite Structures, 161, 187–203 (2017) |
[22] | SHANG, J. S., NGERN, N. H. H., and TAN, V. B. C. Crustacean-inspired helicoidal laminates. Composites Science and Technology, 128, 222–232 (2016) |
[23] | KARTHIKEYAN, K., KAZEMAHVAZI, S., and RUSSELL, B. P. Optimal fibre architecture of soft-matrix ballistic laminates. International Journal of Impact Engineering, 88, 227–237 (2016) |
[24] | ASKARINEJAD, S. and RAHBAR, N. Mechanics of bioinspired lamellar structured ceramic/polymer composites: experiments and models. International Journal of Plasticity, 107, 122–149 (2018) |
[25] | LIU, J. L., LEE, H. P., and TAN, V. B. C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates. Composites Science and Technology, 165, 282–289 (2018) |
[26] | ABIR, M. R., TAY, T. E., and LEE, H. P. On the improved ballistic performance of bio-inspired composites. Composites Part A: Applied Science and Manufacturing, 123, 59–70 (2019) |
[27] | BAHMANI, A., LI, G., WILLETT, T. L., and MONTESANO, J. Three-dimensional micromechanical assessment of bio-inspired composites with non-uniformly dispersed inclusions. Composite Structures, 212, 484–499 (2019) |
[28] | YANG, F., XIE, W., and MENG, S. Global sensitivity analysis of low-velocity impact response of bio-inspired helicoidal laminates. International Journal of Mechanical Sciences, 187, 106110 (2020) |
[29] | WANG, D., ZAHERI, A., RUSSELL, B., ESPINOSA, H., and ZAVATTIERI, P. Fiber reorientation in hybrid helicoidal composites. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103914 (2020) |
[30] | LIU, J. L., SINGH, A. K., LEE, H. P., TAY, T. E., and TAN, V. B. C. The response of bio-inspired helicoidal laminates to small projectile impact. International Journal of Impact Engineering, 142, 103608 (2020) |
[31] | CHEW, E., LIU, J. L., TAY, T. E., TRAN, L. Q. N., and TAN, V. B. C. Improving the mechanical properties of natural fibre reinforced laminates composites through biomimicry. Composite Structures, 258, 113208 (2021) |
[32] | WANG, M., XU, Y. G., QIAO, P., and LI, Z. M. Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates. Composite Structures, 280, 114854 (2022) |
[33] | LIU, J. L., MENCATTELLI, L., ZHI, J., CHUA, P. Y., TAY, T. E., and TAN, V. B. C. Lightweight, fiber-damage-resistant, and healable bio-inspired glass-fiber reinforced polymer laminate. Polymers, 14(3), 475 (2022) |
[34] | SHARMA, A., BELARBI, M. O., GARG, A., and LI, L. Bending analysis of bio-inspired helicoidal/Bouligand laminated composite plates. Mechanics of Advanced Materials and Structures, 31, 5326–5340 (2023) |
[35] | CHEN, J., ZHANG, X., OKABE, Y., SAITO, K., GUO, Z., and PAN, L. The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Materials and Design, 131, 481–486 (2017) |
[36] | ZHANG, X. M., XIE, J., CHEN, J. X., OKABE, Y., PAN, L. C., and XU, M. Y. The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material. Scientific Reports, 7, 4440 (2017) |
[37] | WU, Y., LIU, Q., FU, J., LI, Q., and HUI, D. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels. Composites Part B: Engineering, 121, 122–133 (2017) |
[38] | SUN, Z., LI, D., ZHANG, W., SHI, S., and GUO, X. Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets. Composites Science and Technology, 142, 79–90 (2017) |
[39] | THAKUR, B. R., VERMA, S., SINGH, B. N., and MAITI, D. K. Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerospace Science and Technology, 106, 106083 (2020) |
[40] | GUPTA, A. and GHOSH, A. Isogeometric static and dynamic analysis of laminated and sandwich composite plates using nonpolynomial shear deformation theory. Composites Part B: Engineering, 176, 107295 (2019) |
[41] | SAYYAD, A. S. and GHUGAL, Y. M. On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Composite Structures, 129, 177–201 (2015) |
[42] | ABRATE, S. and DI SCIUVA M. Equivalent single layer theories for composite and sandwich structures: a review. Composite Structures, 179, 482–494 (2017) |
[43] | VERMA, S., THAKUR, B. R., SINGH, B. N., and MAITI, D. K. Geometrically nonlinear flexural analysis of multilayered composite plate using polynomial and non-polynomial shear deformation theories. Aerospace Science and Technology, 112, 106635 (2021) |
[44] | GROVER, N., MAITI, D. K., and SINGH, B. N. A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Composite Structures, 95, 667–675 (2013) |
[45] | SINGH, D., KIRAN, R., and VAISH, R. Vibration and buckling analysis of agglomerated CNT composite plates via isogeometric analysis using non-polynomial shear deformation theory. European Journal of Mechanics-A/Solids, 98, 104892 (2023) |
[46] | SHUFRIN, I., RABINOVITCH, O., and EISENBERGER, M. A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates. International Journal of Mechanical Sciences, 52(12), 1588–1596 (2010) |
[47] | DASH, P. and SINGH, B. N. Static response of geometrically nonlinear laminated composite plates having uncertain material properties. Mechanics of Advanced Materials and Structures, 22(4), 269–280 (2015) |
[48] | TRAN, L. V., LEE, J., NGUYEN-VAN, H., NGUYEN-XUAN, H., and WAHAB, M. A. Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory. International Journal of Non-linear Mechanics, 72, 42–52 (2015) |
[49] | PHUNG-VAN, P., NGUYEN-THOI, T., BUI-XUAN, T., and LIEU-XUAN, Q. A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Computational Materials Science, 96(PB), 549–558 (2015) |
[50] | ANSARI, R., HASSANI, R., GHOLAMI, R., and ROUHI, H. Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. International Journal of Non-linear Mechanics, 126, 103556 (2020) |
[51] | BENNACEUR, M. A. and XU, Y. Application of the natural element method for the analysis of composite laminated plates. Aerospace Science and Technology, 87, 244–253 (2019) |
[52] | SINGH, G., and RAO, Y. V. K. S. Large deflection behaviour of thick composite plates. Composite Structures, 8(1), 13–29 (1987) |
[53] | REDDY, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Florida (2004) |
[54] | LE-MANH, T., LUU-ANH, T., and LEE, J. Isogeometric analysis for flexural behavior of composite plates considering large deformation with small rotations. Mechanics of Advanced Materials and Structures, 23(3), 328–336 (2016) |
[55] | DASH, P. and SINGH, B. N. Geometrically nonlinear bending analysis of laminated composite plate. Communications in Nonlinear Science and Numerical Simulation, 15(10), 3170–3181 (2010) |
[1] | Canchang LIU, Qian DING, Qingmei GONG, Chicheng MA, Shuchang YUE. Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 527-542. |
[2] | R. NAZEMNEZHAD, P. FAHIMI. Free torsional vibration of cracked nanobeams incorporating surface energy effects[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 217-230. |
[3] | Lei HOU, Yushu CHEN. Bifurcation analysis of aero-engine's rotor system under constant maneuver load[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1417-1426. |
[4] | A. G. ARANI, G. S. JAFARI. Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1033-1044. |
[5] | Xiaodong WANG, Yushu CHEN, Lei HOU. Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 985-1004. |
[6] | Demin ZHAO, Jianlin LIU, C. Q. WU. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1017-1032. |
[7] | Xuan XIE;Lingcheng KONG;Yuxi WANG;Jun ZHANG;Yuantai HU. Coupled vibrations and frequency shift of compound system consisting of quartz crystal resonator in thickness-shear motions and micro-beam array immersed in liquid[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 225-232. |
[8] | B. AMIRIAN;R. HOSSEINI-ARA;H. MOOSAVI. Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 875-886. |
[9] | 马宇立;陈继伟;刘咏泉;苏先樾. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(12): 1493-1504. |
[10] | 李凤明;刘春川. Parametric vibration stability and active control of nonlinear beams[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1381-1392. |
[11] | 陈洋洋;燕乐纬;佘锦炎;陈树辉. Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(9): 1137-1152. |
[12] | 李双宝;张伟. Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(9): 1115-1128. |
[13] | 张华彪;陈予恕;李军. Bifurcation on synchronous full annular rub of rigid-rotor elastic-support system[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 865-880. |
[14] | 李忠刚;陈予恕. Research on 1:2 subharmonic resonance and bifurcation of nonlinear rotor-seal system[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(4): 499-510. |
[15] | 沈建和;陈树辉. 混沌Mathieu_Duffing振子的开闭环控制[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(1): 19-27 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||