Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 341-356.doi: https://doi.org/10.1007/s10483-025-3217-8
收稿日期:
2024-06-21
修回日期:
2024-12-11
出版日期:
2025-02-03
发布日期:
2025-02-02
Nanxi DING1, Hengzhen FENG1,†(), H. Z. LOU2, Shenghua FU3, Chenglong LI1, Zihao ZHANG1, Wenlong MA1, Zhengqian ZHANG1
Received:
2024-06-21
Revised:
2024-12-11
Online:
2025-02-03
Published:
2025-02-02
Contact:
Hengzhen FENG
E-mail:6120230131@bit.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 341-356.
Nanxi DING, Hengzhen FENG, H. Z. LOU, Shenghua FU, Chenglong LI, Zihao ZHANG, Wenlong MA, Zhengqian ZHANG. Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 341-356.
"
SP-PINN algorithm | |
Initialize neural network parameters | |
Randomly set weights | |
Start the training loop with epoch | |
While | |
Randomly select data from the datasets, and input them into the neural network. | |
Calculate | |
Use the obtained | |
Calculate losses for initial conditions, boundary conditions, and observations. | |
Compute gradients | |
Calculate the gradient | |
Update neural network parameter | |
Calculate the total loss based on different weight parameters. | |
Update the neural network parameter | |
End |
[1] | HOSSEINI, S., TAYLAN, O., ABUSURRAH, M., AKILAN, T., NAZEMI, E., EFTEKHARI-ZADEH, E., BANO, F., and ROSHANI, G. H. Application of wavelet feature extraction and artificial neural networks for improving the performance of gas-liquid two-phase flow meters used in oil and petrochemical industries. Polymers, 13(21), 3647 (2021) |
[2] | CHENG, Z. and WACHS, A. Physics-informed neural network for modelling force and torque fluctuations in a random array of bidisperse spheres. arXiv, arXiv: (2023) |
[3] | XUAN, W., LOU, H., FU, S., ZHANG, Z., and DING, N. Physics-informed deep learning method for the refrigerant filling mass flow metering. Flow Measurement and Instrumentation, 93, 102418 (2023) |
[4] | LI, S. and BAI, B. Gas-liquid two-phase flow rates measurement using physics-guided deep learning. International Journal of Multiphase Flow, 162, 104421 (2023) |
[5] | ALIYU, A. M., CHOUDHURY, R., SOHANI, B., ATANBORI, J., RIBEIRO, J. X. F., AHMED, S. K. B., and MISHRA, R. An artificial neural network model for the prediction of entrained droplet fraction in annular gas-liquid two-phase flow in vertical pipes. International Journal of Multiphase Flow, 164, 104452 (2023) |
[6] | LU, L., JIN, P., PANG, G., ZHANG, Z., and KARNIADAKIS, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3), 218–229 (2021) |
[7] | LU, L., MENG, X., MAO, Z., and KARNIADAKIS, G. E. DeepXDE: a deep learning library for solving differential equations. SIAM Review, 63(1), 208–228 (2021) |
[8] | LU, D. and CHRISTOV, I. C. Physics-informed neural networks for understanding shear migration of particles in viscous flow. International Journal of Multiphase Flow, 165, 104476 (2023) |
[9] | CHOI, S., JUNG, I., KIM, H., NA, J., and LEE, J. M. Physics-informed deep learning for data-driven solutions of computational fluid dynamics. Korean Journal of Chemical Engineering, 39(3), 515–528 (2022) |
[10] | ZHANG, R., HU, P., and MENG, Q. DRVN (deep random vortex network): a new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids, 34(10), 107112 (2022) |
[11] | RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707 (2019) |
[12] | KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S. F., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3(6), 422–440 (2021) |
[13] | QIU, R., HUANG, R., XIAO, Y., WANG, J. Z., ZHANG, Z., YUE, J. S., ZENG, Z., and WANG, Y. W. Physics-informed neural networks for phase-field method in two-phase flow. Physics of Fluids, 34(5), 052109 (2022) |
[14] | SUN, K. and FENG, X. A second-order network structure based on gradient-enhanced physics-informed neural networks for solving parabolic partial differential equations. Entropy, 25(4), 674 (2023) |
[15] | FINLAYSON, B. A. The Method of Weighted Residuals and Variational Principles, Society for Industrial and Applied Mathematics, Philadelphia (2013) |
[16] | RAFIQ, M., RAFIQ, G., and CHOI, G. S. DSFA-PINN: deep spectral feature aggregation physics informed neural network. IEEE Access, 10, 22247–22259 (2022) |
[17] | GOTTLIEB, D. and ORSZAG, S. A. Numerical Analysis of Spectral Methods: Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia (1977) |
[18] | OUYANG, H., ZHU, Z., CHEN, K., TIAN, B., HUANG, B., and HAO, J. Reconstruction of hydrofoil cavitation flow based on the chain-style physics-informed neural network. Engineering Applications of Artificial Intelligence, 119, 105724 (2023) |
[19] | MAO, Z. P. and MENG, X. H. Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions. Applied Mathematics and Mechanics (English Edition), 44(7), 1069–1084 (2023) https://doi.org/10.1007/s10483-023-2994-7 |
[20] | HE, Y. C., WANG, Z. C., XIANG, H., JIANG, X. M., and TANG, D. W. An artificial viscosity augmented physics-informed neural network for incompressible flow. Applied Mathematics and Mechanics (English Edition), 44(7), 1101–1110 (2023) https://doi.org/10.1007/s10483-023-2993-9 |
[21] | WU, W., DANEKER, M., JOLLEY, M. A., TURNER, K. T., and LU, L. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics. Applied Mathematics and Mechanics (English Edition), 44(7), 1039–1068 (2023) https://doi.org/10.1007/s10483-023-2995-8 |
[22] | NGUYEN, V. L., DEGAWA, T., UCHIYAMA, T., and TAKAMURE, K. Numerical simulation of bubbly flow around a cylinder by semi-Lagrangian-Lagrangian method. International Journal of Numerical Methods for Heat & Fluid Flow, 29(12), 4660–4683 (2019) |
[23] | UCHIYAMA, T. Numerical simulation of gas-liquid two-phase flow around a rectangular cylinder by the incompressible two-fluid model. Nuclear Science and Engineering, 133(1), 92–105 (1999) |
[24] | BRUNTON, S. L. and KUTZ, J. N. Promising directions of machine learning for partial differential equations. Nature Computational Science, 4(7), 483–494 (2024) |
[25] | SADEQUE, M. A., RAJARATNAM, N., and LOEWEN, M. R. Flow around cylinders in open channels. Journal of Engineering Mechanics, 134(1), 60–71 (2008) |
[26] | RAO, C., SUN, H., and LIU, Y. Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 10(3), 207–212 (2020) |
[1] | Yi XIA;Jianzhong LIN;Fubing BAO;T. L. CHAN. Flow instability of nanofuilds in jet[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 141-152. |
[2] | 马田田;韦昌富;陈盼;魏厚振. Implicit scheme for integrating constitutive model of unsaturated soils with coupling hydraulic and mechanical behavior[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(9): 1129-1154. |
[3] | A. H. MOSAFFA;F. TALATI;M. A. ROSEN;H. BASIRAT-TABRIZI. Green’s function solution for transient heat conduction in annular fin during solidification of phase change material[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(10): 1265-1274. |
[4] | B. J. GIREESHA;G. S. ROOPA;C. S. BAGEWADI. Effect of viscous dissipation and heat source on flow and heat transfer of dusty fluid over unsteady stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(8): 1001-1014. |
[5] | 汤波;李俊峰;王天舒. 带自由液面粘性流体运动的最小二乘有限元模拟[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(7): 943-952 . |
[6] | 尹招琴;林建忠;周锟. Research on nucleation and coagulation of nanoparticles in parallel twin jets[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(2): 153-162 . |
[7] | 于明州;林建忠;陈丽华. Nanoparticle coagulation in a planar jet via moment method[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1445-1453 . |
[8] | 岳高伟;郑晓静. Effect of thermal diffusion and electrostatic force on evolution of wind-blown sand flow[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(2): 183-192 . |
[9] | 胡春波;曾卓雄. EFFECT OF EMPIRICAL COEFFICIENTS ON SIMULATION IN TWO-SCALE SECOND-ORDER MOMENT PARTICLE-PHASE TURBULENCE MODEL[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(11): 1491-1497 . |
[10] | 曾卓雄;周力行;刘志和. SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(10): 1373-1381 . |
[11] | 王叶龙. SIMULATION OF SEDIMENTATION OF TWO CIRCULAR PARTICLES WITH COLLISION CONSIDERED IN VERTICAL CHANNEL[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(7): 983-991 . |
[12] | 王灿星;易林. NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(2): 247-253 . |
[13] | 王平;唐少强. LIQUID-GAS COEXISTENCE EQUILIBRIUM IN A RELAXATION MODEL[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(6): 767-773 . |
[14] | 邵雪明;刘杨;余钊圣. INTERACTIONS BETWEEN TWO SEDIMENTING PARTICLES WITH DIFFERENT SIZES[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(3): 407-414 . |
[15] | 张卫峰;林建忠. RESEARCH ON THE MOTION OF PARTICLES IN THE TURBULENT PIPE FLOW OF FIBER SUSPENSIONS[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(7): 741-750. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||