[1] |
MACONACHIE, T., LEARY, M., LOZANOVSKI, B., ZHANG, X. Z., QIAN, M., FARUQUE, O., and BRANDT, M. SLM lattice structures: properties, performance, applications and challenges. Materials & Design, 183, 108137 (2019)
|
[2] |
GE, J. G., YAN, X. C., LEI, Y. P., AHMED, M., O'REILLY, P., ZHANG, C., LUPOI, R., and YIN, S. A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures. Materials & Design, 198, 109292 (2021)
|
[3] |
BANG, G. B., KIM, W. R., KIM, H. K., PARK, H. K., KIM, G. H., HYUN, S. K., KWON, O., and KIM, H. G. Effect of process parameters for selective laser melting with SUS316L on mechanical and microstructural properties with variation in chemical composition. Materials & Design, 197, 109221 (2021)
|
[4] |
REN, Z. H., CHANG, Y. H., MA, Y. M., SHIH, K. L., DONG, B. W., and LEE, C. Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 8(3), 1900653 (2020)
|
[5] |
CHEN, Y. X., AI, B., and WONG, Z. J. Soft optical metamaterials. Nano Convergence, 7, 1–17 (2020)
|
[6] |
ZHENG, X. Y., LEE, H., WEISGRABER, T. H., SHUSTEFF, M., DEOTTE, J., DUOSS, E. B., KUNTZ, J. D., BIENER, M. M., GE, Q., JACKSON, J. A., KUCHEYEV, S. O., FANG, N. X., and SPADACCINI, C. M. Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373–1377 (2014)
|
[7] |
GARLAND, A. P., ADSTEDT, K. M., CASIAS, Z. J., WHITE, B. C., MOOK, W. M., KAEHR, B., JARED, B. H., LESTER, B. T., LEATHE, N. S., SCHWALLER, E., and BOYCE, B. L. Coulombic friction in metamaterials to dissipate mechanical energy. Extreme Mechanics Letters, 40, 100847 (2020)
|
[8] |
CLAEYS, C., DE MELO, N. G. R., VAN BELLE, L., DECKERS, E., and DESMET, W. Design and validation of metamaterials for multiple structural stop bands in waveguides. Extreme Mechanics Letters, 12, 7–22 (2017)
|
[9] |
ZHANG, C., CAO, W. K., YANG, J., KE, J. C., CHEN, M. Z., WU, L. T., CHENG, Q., and CUI, T. J. Multiphysical digital coding metamaterials for independent control of broadband electromagnetic and acoustic waves with a large variety of functions. ACS Applied Materials & Interfaces, 11, 17050–17055 (2019)
|
[10] |
CHEN, H. and CHAN, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518 (2007)
|
[11] |
MUELLER, J. and SHEA, K. Stepwise graded struts for maximizing energy absorption in lattices. Extreme Mechanics Letters, 25, 7–15 (2018)
|
[12] |
WEI, K., YANG, Q. D., LING, B., XIE, H. Q., QU, Z. L., and FANG, D. N. Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting. Extreme Mechanics Letters, 23, 41–48 (2018)
|
[13] |
AL-SAEDI, D. S. J., MASOOD, S. H., FAIZAN-UR-RAB, M., ALOMARAH, A., and PONNUSAMY, P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Materials & Design, 144, 32–44 (2018)
|
[14] |
JIN, N., WANG, F. C., WANG, Y. W., ZHANG, B. W., CHENG, H. W., and ZHANG, H. M. Failure and energy absorption characteristics of four lattice structures under dynamic loading. Materials & Design, 169, 107655 (2021)
|
[15] |
MASKERY, I., ABOULKHAIR, N. T., AREMU, A. O., TUCK, C. J., ASHCROFT, I. A., WILDMAN, R. D., and HAGUE, R. J. M. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering: A, 670, 264–274 (2016)
|
[16] |
ZHANG, L., FEIH, S., DAYNES, S., CHANG, S., WANG, M. Y., WEI, J., and LU, W. F. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Additive Manufacturing, 23, 505–515 (2018)
|
[17] |
WANG, B., TAN, X. J., ZHU, S. W., CHEN, S., YAO, K. L., XU, P. F., WANG, L. C., WU, H. P., and SUN, Y. G. Cushion performance of cylindrical negative stiffness structures: analysis and optimization. Composite Structures, 227, 111276 (2019)
|
[18] |
KÖNEN, P., HAASE, C., BÜLTMANN, J., ZIEGLER, S., SCHLEIFENBAUM, J. H., and BLECK, W. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials & Design, 145, 205–217 (2018)
|
[19] |
ALBERDI, R., DINGREVILLE, R., ROBBINS, J., WALSH, T., WHITE, B. C., JARED, B., and BOYCE, B. L. Multi-morphology lattices lead to improved plastic energy absorption. Materials & Design, 194, 108883 (2020)
|
[20] |
WANG, X. Z., RUI, S. T., YANG, S. K., ZHANG, W. Q., and MA, F. Y. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness. Applied Mathematics and Mechanics (English Edition), 45(7), 1209–1224 (2024) https://doi.org/10.1007/s10483-024-3158-7
|
[21] |
ZHAO, L., LU, Z. Q., DING, H., and CHEN, L. Q. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting. Applied Mathematics and Mechanics (English Edition), 45(7), 1243–1260 (2024) https://doi.org/10.1007/s10483-024-3159-7
|
[22] |
DONG, X. J., WANG, S., WANG, A. S., WANG, L., ZHANG, Z. Z., TIE, Y. H., LIN, Q. Y., and SUN, Y. T. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial. Applied Mathematics and Mechanics (English Edition), 45(10), 1841–1856 (2024) https://doi.org/10.1007/s10483-024-3168-7
|
[23] |
HAN, D. H., JIA, Q., GAO, Y. Y., JIN, Q. D., FANG, X., WEN, J. H., and YU, D. L. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes. Applied Mathematics and Mechanics (English Edition), 45(10), 1821–1840 (2024) https://doi.org/10.1007/s10483-024-3166-8
|
[24] |
YU, R. H., RUI, S. T., WANG, X. Z., and MA, F. Y. An integrated load-bearing and vibration-isolation supporter with decorated metamaterial absorbers. International Journal of Mechanical Sciences, 253, 108406 (2023)
|
[25] |
RUI, S. T., ZHANG, W. Q., YU, R. H., WANG, X. Z., and MA, F. Y. A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption. Mechanical Systems and Signal Processing, 216, 111464 (2024)
|
[26] |
ZHANG, C., ZHANG, D., YIN, F. J., GUO, M. J., MA, F. Y., and WU, C. J. “Borrow-force-attack-force” by multi-scale elastic metamaterial with nonlinear damping. Composites Part B-Engineering, 288, 111884 (2025)
|
[27] |
SMITH, M. G., CROY, I., ÖGREN, M., and WAYE, K. P. On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate. PLoS ONE, 8, 55829 (2013)
|
[28] |
OUAKKA, S., GUEDDIDA, A., PENNEC, Y., DJAFARI-ROUHANI, B., KOUROUSSIS, G., and VERLINDEN, O. Efficient mitigation of railway induced vibrations using seismic metamaterials. Engineering Structures, 284, 115767 (2023)
|
[29] |
RAI, G., RAHN, C., SMITH, E., and MARR, C. 3D printed circular nodal plate stacks for broadband vibration isolation. Journal of Sound and Vibration, 554, 117647 (2023)
|
[30] |
LUO, Y. M., HUANG, T. T., ZHANG, Y., XU, H. H., XIE, Y. M., and REN, X. Novel meter-scale seismic metamaterial with low-frequency wide bandgap for Lamb waves. Engineering Structures, 275, 115321 (2023)
|
[31] |
ZHANG, K., LUO, J., HONG, F., and DENG, Z. C. Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps. Engineering Structures, 232, 111870 (2021)
|
[32] |
BAROUTAJI, A., ARJUNAN, A., ROBINSION, J., RAMADAN, M., and OLABI, A. G. Metamaterial for crashworthiness applications. Reference Module in Materials Science and Materials Engineering, 3, 57–69 (2021)
|
[33] |
NIAN, Y. Z., WAN, S., WANG, X., ZHOU, P., AVCAR, M., and LI, M. Study on crashworthiness of nature-inspired functionally graded lattice metamaterials for bridge pier protection against ship collision. Engineering Structures, 277, 115404 (2023)
|
[34] |
ZHANG, L. W., BAI, Z. H., ZHANG, Q., JIN, Y., and CHEN, Y. F. On vibration isolation performance and crashworthiness of a three-dimensional lattice metamaterial. Engineering Structures, 292, 116510 (2023)
|
[35] |
TANCOGNE-DEJEAN, T. and MOHR, D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. International Journal of Mechanical Sciences, 141, 101–116 (2018)
|
[36] |
YIN, H. F., LIU, Z. P., DAI, J. L., WEN, G. L., and ZHANG, C. Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Composites Part B-Engineering, 182, 107565 (2020)
|
[37] |
MONTAZERI, A., BAHMANPOUR, E., and SAFARABADI, M. A Poisson's ratio sign-switching mechanical metamaterial with tunable stiffness. International Journal of Mechanical Sciences, 260, 108670 (2023)
|
[38] |
LYU, Y. T., SONG, X. S., WANG, H., and JIANG, J. A novel mechanical metamaterial with tunable stiffness and individually adjustable Poisson's ratio. Materials Today Communications, 40, 110135 (2024)
|
[39] |
WANG, S. B., GUO, J. X., BICZO, A., and FENG, N. Design and macroscopic mechanical responses of auxetic metamaterials with tunable stiffness. Materials & Design, 241, 112913 (2024)
|
[40] |
KHAJEPOUR, M., BAYATI, A., REZAEE, B., KHATAMI, A., SOLTANI, M. A., FARAJI, G., ABRINIA, K., BAGHANI, M., and BANIASSADI, M. Numerical and experimental investigation of 3D printed tunable stiffness metamaterial with real-time response using digital light processing technology. Journal of Materials Research and Technology, 33, 480–490 (2024)
|
[41] |
LI, F. Y., ZHANG, Q., WANG, Z. J., and ZHU, D. C. A new three-dimensional re-entrant negative Poisson's ratio metamaterial with tunable stiffness. Engineering Structures, 306, 117793 (2024)
|
[42] |
FANG, X., WEN, J. H., CHENG, L., YU, D. L., ZHANG, H. J., and GUMBSCH, P. Programmable gear-based mechanical metamaterials. Nature Materials, 21, 869–876 (2022)
|
[43] |
YU, X. L., ZHOU, J., LIANG, H. Y., JIANG, Z. Y., and WU, L. L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Progress in Materials Science, 94, 114–173 (2018)
|
[44] |
MO, S., ZHOU, C. P., WANG, L., HU, Q. S., GAO, H. J., and CEN, G. J. Research on dynamic characteristics of electromechanical coupling of robot joint crack transmission system. Journal of Mechanical Engineering, 58, 57–67 (2022)
|