Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (5): 795-812.doi: https://doi.org/10.1007/s10483-025-3249-8
收稿日期:
2025-01-15
修回日期:
2025-03-10
出版日期:
2025-05-07
发布日期:
2025-05-07
Tianchi YU1, Feng LIANG2,3,†(), Hualin YANG2,3
Received:
2025-01-15
Revised:
2025-03-10
Online:
2025-05-07
Published:
2025-05-07
Contact:
Feng LIANG
E-mail:lf84411@163.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 795-812.
Tianchi YU, Feng LIANG, Hualin YANG. Vibration energy harvesting of a three-directional functionally graded pipe conveying fluids[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 795-812.
[1] | ROUNDY, S. and WRIGHT, P. K.A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 13, 1131–1142 (2004) |
[2] | ERTURK, A. and INMAN, D. J.A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics-Transactions of the ASME, 130, 041002 (2008) |
[3] | SODANO, H. A., PARK, G., and INMAN, D. J.Estimation of electric charge output for piezoelectric energy harvesting. Strain, 40, 49–58 (2004) |
[4] | DU TOIT, N. E., WARDLE, B. L., and KIM, S. G.Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71, 121–160 (2005) |
[5] | ERTURK, A. and INMAN, D. J.On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Journal of Intelligent Material Systems and Structures, 19, 1311–1325 (2008) |
[6] | ERTURK, A. and INMAN, D. J.An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18, 025009 (2009) |
[7] | RAFIQUE, S. and BONELLO, P.Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester. Smart Materials and Structures, 19, 094008 (2010) |
[8] | CAO, D. X., HU, W. H., GAO, Y. H., and GUO, X. Y.Vibration and energy harvesting performance of a piezoelectric phononic crystal beam. Smart Materials and Structures, 28, 085014 (2019) |
[9] | WANG, X. G., WANG, L., SHU, H. S., and ZHANG, L.Research on dual-functional characteristics of piezoelectric metamaterial beams for vibration reduction and power generation. AIP Advances, 12, 025326 (2022) |
[10] | MENG, Y., LU, Z. Q., DING, H., and CHEN, L. Q.Plate theory based modeling and analysis of nonlinear piezoelectric composite circular plate energy harvesters. Nonlinear Dynamics, 112, 5129–5149 (2024) |
[11] | DENG, T., ZHAO, L. K., and JIN, F.Dual-functional perforated metamaterial plate for amplified energy harvesting of both acoustic and flexural waves. Thin-Walled Structures, 197, 111615 (2024) |
[12] | DU, W. Q., XIANG, Z. J., and QIU, X. B.A semi-analytical electromechanical model for energy harvesting of plate with acoustic black hole indentations. Thin-Walled Structures, 203, 112235 (2024) |
[13] | WANG, J. L., ZHANG, C. Y., ZHANG, M. J., ABDELKEFI, A., YU, H. Y., GE, X. M., and LIU, H. D.Enhancing energy harvesting from flow-induced vibrations of a circular cylinder using a downstream rectangular plate: an experimental study. International Journal of Mechanical Sciences, 211, 106781 (2021) |
[14] | ZHANG, Y. S., WANG, W. S., ZHENG, R. C., NAKANO, K., and CARTMELL, M. P.A piezoelectric cantilever-asymmetric-conical-pendulum-based energy harvesting under multi-directional excitation. Journal of Sound and Vibration, 569, 118080 (2024) |
[15] | FU, H. L., JIANG, J. J., HU, S. J., RAO, J., and THEODOSSIADES, S.A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing. Mechanical Systems and Signal Processing, 189, 110034 (2023) |
[16] | UENO, H., TOSHIYOSHI, H., and SUZUKI, T.Frequency conversion interposer with no-internal stress curved-beam for MEMS vibrational energy harvesters. Sensors and Actuators A: Physical, 378, 115750 (2024) |
[17] | MUSCALU, G., FIRTAT, B., ANGHELESCU, A., MOLDOVAN, C., DINULESCU, S., BRASOVEANU, C., EKWINSKA, M., SZMIGIEL, D., ZABOROWSKI, M., ZAJAC, J., STAN, I., and TULBURE, A.Piezoelectric MEMS energy harvester for low-power applications. Electronics, 13, 2087 (2024) |
[18] | CHEN, Y. B. and YAN, Z.Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. International Journal of Mechanical Sciences, 173, 105473 (2020) |
[19] | ZHANG, C. L., CHEN, W. Q., and ZHANG, C.Two-dimensional theory of piezoelectric plates considering surface effect. European Journal of Mechanics-A/Solids, 41, 50–57 (2013) |
[20] | GUO, Y. C. and DING, H.Theoretical and experimental study on dynamic characteristics of L-shaped fluid-conveying pipes. Applied Mathematical Modelling, 129, 232–249 (2024) |
[21] | YUAN, J. R. and DING, H.Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. International Journal of Mechanical Sciences, 232, 107625 (2022) |
[22] | ZHOU, J., CHANG, X. P., XIONG, Z. J., and LI, Y. H.Stability and nonlinear vibration analysis of fluid-conveying composite pipes with elastic boundary conditions. Thin-Walled Structures, 179, 109597 (2022) |
[23] | CAO, R. Q., GUO, Z. L., CHEN, W., DAI, H. L., and WANG, L.Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model. Applied Mathematics and Mechanics (English Edition), 45, 261–276 (2024) https://doi.org/10.1007/s10483-024-3084-7 |
[24] | ZHOU, K., DAI, H. L., WANG, L., NI, Q., and HAGEDORN, P.Modeling and nonlinear dynamics of cantilevered pipe with tapered free end concurrently subjected to axial internal and external flows. Mechanical Systems and Signal Processing, 169, 108794 (2022) |
[25] | DING, H. and JI, J. C.Vibration control of fluid-conveying pipes: a state-of-the-art review. Applied Mathematics and Mechanics (English Edition), 44, 1423–1456 (2023) https://doi.org/10.1007/s10483-023-3023-9 |
[26] | LIANG, F. and CHEN, Z. Q.Enhanced dynamical stability of rotating composite pipes conveying fluid by a smart piezoelectric design. Applied Mathematical Modelling, 138, 115798 (2025) |
[27] | LIANG, F. and CHEN, Z. Q.Electro-mechanical vibration control of functionally graded marine risers by a piezoelectric meta-structure design. Applied Ocean Research, 154, 104388 (2025) |
[28] | DENG, T. C. and DING, H.Frequency band preservation: pipe design strategy away from resonance. Acta Mechanica Sinica, 40, 523201 (2023) |
[29] | CHEN, W., YAN, H., CAO, R. Q., DAI, H. L., and WANG, L.Theoretical and experimental investigations on large-deformation dynamics of the standing cantilevered pipe conveying fluid. Mechanical Systems and Signal Processing, 220, 111688 (2024) |
[30] | LI, M. W., YAN, H., and WANG, L.Data-driven model reduction for pipes conveying fluid via spectral submanifolds. International Journal of Mechanical Sciences, 277, 109414 (2024) |
[31] | ZHU, B., FENG, J. Z., GUO, Y., and WANG, Y. Q.Exact closed-form solution for buckling and free vibration of pipes conveying fluid with intermediate elastic supports. Journal of Sound and Vibration, 596, 118762 (2025) |
[32] | CAO, D. X., WANG, J. R., GUO, X. Y., LAI, S. K., and SHEN, Y. J.Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques: principles, structures, and nonlinear designs. Applied Mathematics and Mechanics (English Edition), 43, 959–978 (2022) https://doi.org/10.1007/s10483-022-2867-7 |
[33] | CHATTERJEE, R., SHAH, C. L., GUPTA, S., and SARKAR, S.Energy harvesting in a flow-induced vibrating flapper with biomimetic gaits. International Journal of Mechanical Sciences, 272, 109150 (2024) |
[34] | DAI, H. L., ABDELMOULA, H., ABDELKEFI, A., and WANG, L.Towards control of cross-flow-induced vibrations based on energy harvesting. Nonlinear Dynamics, 88, 2329–2346 (2017) |
[35] | MA, X. Q., CHEN, G. T., LI, Z. Y., LITAK, G., and ZHOU, S. X.Nonlinear dynamic characteristics of the multistable wake-galloping energy harvester. Nonlinear Dynamics, 112, 10937–10958 (2024) |
[36] | MA, X. Q. and ZHOU, S. X.A review of flow-induced vibration energy harvesters. Energy Conversion and Management, 254, 115223 (2022) |
[37] | MUTSUDA, H., TANAKA, Y., PATEL, R., and DOI, Y.Harvesting flow-induced vibration using a highly flexible piezoelectric energy device. Applied Ocean Research, 68, 39–52 (2017) |
[38] | WANG, J. L., GENG, L. F., DING, L., ZHU, H. J., and YURCHENKO, D.The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902 (2020) |
[39] | WANG, J. L., GENG, L. F., ZHOU, S. X., ZHANG, Z. E., LAI, Z. H., and YURCHENKO, D.Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica, 36, 592–605 (2020) |
[40] | ZHOU, M. Y., FU, Y., LIU, L., XU, Z. L., AL-FURJAN, M. S. H., and WANG, W.Modeling and preliminary analysis of piezoelectric energy harvester based on cylindrical tube conveying fluctuating fluid. Meccanica, 53, 2379–2392 (2018) |
[41] | LUMENTUT, M. F. and FRISWELL, M. I.A smart pipe energy harvester excited by fluid flow and base excitation. Acta Mechanica, 229, 4431–4458 (2018) |
[42] | LUMENTUT, M. F. and FRISWELL, M. I.Powering smart pipes with fluid flow: effect of velocity profiles. Computers & Structures, 258, 106680 (2022) |
[43] | YANG, T., ZHOU, S. X., FANG, S. T., QIN, W. Y., and INMAN, D. J.Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications. Applied Physics Reviews, 8, 031317 (2021) |
[44] | LIU, C. C. and JING, X. J.Nonlinear vibration energy harvesting with adjustable stiffness, damping and inertia. Nonlinear Dynamics, 88, 79–95 (2017) |
[45] | YAO, M. H., WANG, X. F., WU, Q. L., NIU, Y., and WANG, S. H.Dynamic analysis and design of power management circuit of the nonlinear electromagnetic energy harvesting device for the automobile suspension. Mechanical Systems and Signal Processing, 170, 108831 (2022) |
[46] | WANG, G. and SHEN, J. W.Flutter instabilities of cantilevered piezoelectric pipe conveying fluid. Journal of Intelligent Material Systems and Structures, 30, 606–617 (2019) |
[47] | LU, Z. Q., CHEN, J., DING, H., and CHEN, L. Q.Energy harvesting of a fluid-conveying piezoelectric pipe. Applied Mathematical Modelling, 107, 165–181 (2022) |
[48] | ZHU, B., CHEN, X. C., GUO, Y., and LI, Y. H.Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections. International Journal of Mechanical Sciences, 189, 105947 (2021) |
[49] | DING, Y. H., CHEN, Z. Q., LIANG, F., LEE, H. P., YU, H., LIN, S. C., and LUO, J.Flexural vibration control of functionally graded poroelastic pipes via periodic piezoelectric design. Acta Mechanica, 235, 3131–3147 (2024) |
[50] | CHANG, X. P. and ZHOU, J.Static and dynamic characteristics of post-buckling of porous functionally graded pipes under thermal shock. Composite Structures, 288, 115373 (2022) |
[51] | MAO, J. J., WANG, Y. J., ZHANG, W., WU, M. Q., LIU, Y. Z., and LIU, X. H.Vibration and wave propagation in functionally graded beams with inclined cracks. Applied Mathematical Modelling, 118, 166–184 (2023) |
[52] | QIU, N., ZHANG, J. Z., LI, C. Y., SHEN, Y. J., and FANG, J. G.Mechanical properties of three-dimensional functionally graded triply periodic minimum surface structures. International Journal of Mechanical Sciences, 246, 108118 (2023) |
[53] | TANG, Y., WANG, G., REN, T. L., DING, Q., and YANG, T. Z.Nonlinear mechanics of a slender beam composited by three-directional functionally graded materials. Composite Structures, 270, 114088 (2021) |
[54] | WANG, J. X., WANG, Y. Q., and CHAI, Q. D.Free vibration analysis of a spinning functionally graded spherical-cylindrical-conical shell with general boundary conditions in a thermal environment. Thin-Walled Structures, 180, 109768 (2022) |
[55] | ZHENG, Y., ZHANG, W., LIU, T., and ZHANG, Y. F.Resonant responses and double-parameter multi-pulse chaotic vibrations of graphene platelets reinforced functionally graded rotating composite blade. Chaos Solitons & Fractals, 156, 111855 (2022) |
[56] | LIANG, F., GAO, A., and YANG, X. D.Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans. Applied Mathematical Modelling, 83, 454–469 (2020) |
[57] | CHAI, Q. D. and WANG, Y. Q.Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion. Engineering Structures, 252, 113718 (2022) |
[58] | WANG, Y. Q., YE, C., and ZU, J. W.Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerospace Science and Technology, 85, 359–370 (2019) |
[59] | BISWAL, A. R., ROY, T., and BEHERA, R. K.Optimal vibration energy harvesting from non-prismatic axially functionally graded piezolaminated cantilever beam using genetic algorithm. Journal of Intelligent Material Systems and Structures, 28, 1957–1976 (2017) |
[60] | QI, L.Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy, 171, 721–730 (2019) |
[61] | CAO, Y. J., HUANG, H. W., ZHU, Z. H., and SU, S. K.Optimized energy harvesting through piezoelectric functionally graded cantilever beams. Smart Materials and Structures, 28, 025038 (2019) |
[62] | LARKIN, K., HUNTER, A., and ABDELKEFI, A.Size-dependent modeling and performance enhancement of functionally graded piezoelectric energy harvesters. Journal of Nanoparticle Research, 22, 225 (2020) |
[63] | ADHIKARI, J., KUMAR, A., KUMAR, R., and JAIN, S. C.Performance enhancement of functionally graded piezoelectric tile by tailoring poling orientation. Mechanics Based Design of Structures and Machines, 51, 3759–3778 (2023) |
[64] | MOTLAGH, P. L., ANAMAGH, M. R., BEDIZ, B., and BASDOGAN, I.Electromechanical analysis of functionally graded panels with surface-integrated piezo-patches for optimal energy harvesting. Composite Structures, 263, 113714 (2021) |
[65] | TANG, Y., WANG, G., YANG, T. Z., and DING, Q.Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink. Nonlinear Dynamics, 111, 2415–2442 (2023) |
[66] | ERTURK, A. and INMAN, D. J.Piezoelectric Energy Harvesting, 1st ed, John Wiley & Sons, Ltd., West Sussex (2011) |
[1] | Haijuan ZHANG, Jian MA, Hu DING, Liqun CHEN. Vibration of axially moving beam supported by viscoelastic foundation[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 161-172. |
[2] | Demin ZHAO, Jianlin LIU, C. Q. WU. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1017-1032. |
[3] | 王波. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(6): 817-828. |
[4] | 张志良;程昌钧. Forced vibration and special effects of revolution shells in turning point range[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(7): 861-872 . |
[5] | 梁祖峰;唐晓艳. Analytical solution of fractionally damped beam by Adomian decomposition method[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(2): 219-228 . |
[6] | . RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(8): 1049-1059 . |
[7] | 黄炎;雷勇军;申慧君. FREE VIBRATION OF ANISOTROPIC RECTANGULAR PLATES BY GENERAL ANALYTICAL METHOD[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(4): 461-467 . |
[8] | 王新志;赵永刚;踞旭;赵艳影;叶开沅. UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(4): 423-430 . |
[9] | 王新志;王钢;赵艳影;叶开沅. NONLINEAR DYNAMICAL STABILITY ANALYSIS OF THE CIRCULAR THREE-DIMENSIONAL FRAME[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(4): 367-372. |
[10] | 邱平;王新志;叶开沅. BIFURCATION AND CHAOS OF THE CIRCULAR PLATES ON THE NONLINEAR ELASTIC FOUNDATION[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(8): 880-885. |
[11] | 程远胜;张佑啟;区达光. DYNAMIC RESPONSE OF PLATES DUE TO MOVING VEHICLES USING FINITE STRIP METHOD[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(5): 507-513. |
[12] | 张英世. VIBRATIONS OF STEPPED ONE-WAY THIN RECTANGULAR PLATES SUBJECTED TO IN-PLANE TENSILE/ COMPRESSIVE FORCE IN Y-DIRECTION ON WINKLER’S FOUNDATION[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(7): 783-790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||