[1] Ying. C. F.,R. Truell. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. App. Phys., 27, 9 (1956), 1086-1097.
[2] Einspruch. N. G., E.J. Witterholt. R. Truell. Scattering of a plane transverse wave by a spherical obstacle in an elastic medium. J. App. Phys.,31, 5 (1960),806-818.
[3] Johnson. G.,R. Truel. Numerical computations of elastic scattering cross section, J. App.Phys.36, 11(1965),3466-3475.
[4] Mal, A. K., L. Knopoff,Elastic wave velocities in two-component systems. J. Inst, Math.Applics.,3 (1967), 376-387.
[5] Gubernatis. J. E.,E. Domang, J. A. Krumhansl. Formal aspects of the theory of the scattering of ultrasound by flaws in elastic materials, J. App.Phys.,48, 7 (1977),2804-2811.
[6] Gubernatis. J. E.,E. Domany.J. A. Krumhansl.M, Huberman. The born approximation in the theory of the scattering of elastic waves by flaws. J. App. Phys, 48, 7 (1977), 2812-2819.
[7] Wheeler. P., T. Mura. Dynamic equivalence of composite material and eigenstrain problems.J. App.Mechanics. ASME, 40 (1973), 498-502.
[8] Fu. L. S., T. Mura. The determination of elastodynamic fields of an ellipsoidal inhomogeneity. J. App. Mechanics, ASME. 50 (1983). 390-396.
[9] Zhong Wei-fang. Lu Gong-fu. The elastodynamical problems of two ellipsoidal inhomogeneities by the method of equivalent inclusions. Master Dissertation. Huazhong University of Sience and Technology (1984).
[10] Li Hao, Zhong Wei-fang. Li Gong fu, Evaluating volume integrals associated with elastodynamics problems of inhomogeneities by potential theory. (to be published)
[11] Eshelby.J. D.,The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society,London,241 (1957).
[12] Moschovidis. Z. A.,T. Mora, Two-ellipsoidal inhomogeneities by the equivalent inclusion method, ASME J.App.Mechanics.42 (1975). 847-852.
[13] Gurtin. M. E.,Variational principles for linear elastodynamics. Archire for Rational Mechanics and Analysis, 16, 1(1964). 34. |