[1] Sehgal,V.M.and A.T.Bharucha-Reid,Fixed points of contraction mappings on probabilistic metric spaces,Math.Systems Theory,6(1972),97-102. [2] Cain,G.L.,Jr.and R.H.Kasriel,Fixed and periodic points of local contraction mappings on probabilistic metric spaces,ibid.,9(1975),289-297. [3] Edelstein,M.,An extension of Banach's contraction principle,Proc.Amer.Math.Soc.,12(1961),7-10. [4] Kuhfitting,Peter K.F.,Fixed points of Locally contractive and nonexpansive set-valued mappings,Pacific J.Math.,65,2(1976),399-403. [5] Menger,K.,Statistical metrics,Proc.Nat.Acad.Sci.USA.,28(1942),535-537. [6] Zhang Shi-sheng,Fixed point theorems of mappings on probabilistic metric spaces with applications,Scientia Sinica(Series A),26,11(1983),1144-1155. [7] Zhang Shi-sheng,On the theory of probabilistic metric spaces with applications,Acta Math.Sinica,New Series,1,4(1985),366-377. [8] Zhang Shi-sheng,Fixed Point Theory and Applications,Chongqing Press,Chongqing(1984).(in Chinese). [9] Schweizer,B.,A.Sklar and E.Thorp,The metrization of statistical metric spaces,Pacific J.Math.,10(1960),673-675. [10] Fang Jin-xuan,Fixed point theorems for multi-valued mappings on Menger spaces,Journal of Nanjing Normal University(Natural Science Edition),11,4(1988),1-6(in Chinese). [11] Fang Jin-xuan,Fixed point theorem ofφ-contraction mapping on probabilistic metric spaces,Journal of Xinjiang University(Natural Science Edition),5,3(1988),21-28.(in Chinese). [12] Nadler,S.B.,Multi-valued contraction mapping,Pacific J.Math.,30(1969),475-487. |