[1] A. Bahri and H. Berestycki, A perturhation method in critical point theory and applications, Trans A.M.S. 267.1(1981).1-32.
[2] A. Bahri and H. Berestycki, Forecd、ibrations of superquadrutic-Hamiltunian system,Acta Math., 152, 3-4(1984),143-197.
[3] Dai Shuhuan and Nain Ziqian, The existence of the nontrivial solution of the equation Δ2-aΔu+bu=f(x,u)——an application of the mountain pass lemurs, J.Jilin University.1(1984).(in Chinese)
[4] Tang Xianjiang, Infinitely solutions of the equation Δ2-aΔu+bu=f(x,u)+g(x,u) J. Shichuan University, 4(1984). (in Chinese)
[5] S. T.Yau, Differential Geometry, Science Press(1988). (in Chinese)
[6] Dai Qiuyi, The estimation of the nonpositive eigenvalues for operator Δ2-u(x) and application, ACTA MATHEMATICA SCIENTIA.12(1992).93-95.(in Chinese)
[7] P. Li and S. T. Yau, On the Schrodinger Equation and the eigenvalue problem, Comm Math.Phy.,88(1982).309-318.
[8] Kazunaga Tanaica, Morse indices at critical points related to the symmetrie mountain pass theorem and applications. comm P.D.E.,14,1(1989).99-128.
[9] Chang Kungching, Critical Point Theory and Its Applications. Shanghai Science and Technology Press(1986).(in Chinese)
[10] Lian Shantao and Liu Jinwang.Fundaments of Homotopy Theory.Beijing University Press(1980).(in Chinese)
[11] P. H. Rabinowitz. Course Lecture-CIME.Varenna Italy (1974).
[12] R. S. Palais, Morse theory on Hilbert manifolds,Topology,2(1963),299-340. |