[1] K. A. Ames and L. E. Payne, Decay estimates in steady pipe flow, SIAM J. Math. Anal., 20(1986), 789.
[2] W. S. Edelstein, A spatial decay estimates for the heat equation, J. Appl. Math. Phys., (ZAMP) 20(1969), 900.
[3] C. O. Horgan and J. K. Knowles, Recent developments concerning Saint-Veant's principle, in Adrances in Applied Mechanics, ed. by T. Y. Wu and J. W. Hutchinson, Academic Press, San Diego, 23(1983).
[4] C. O. Horgan, Recent developments concerning Saint-Venant's principle: An Update Applied Mechanics Reviews, 42(1989), 295.
[5] C. O. Horgan. Decay estimates for the biharmonic equation with application to Saint-Venant principle in plane elasticity and Stokes flows, Q. Appl. Math., 47(1989), 147.
[6] C. O. Horgan and L. E. Payne, Phragmen-Lindelöf type results for harmonic functions with nonlinear boundary conditions, Arch. Rations! Meclf. Anal., 122 (1993), 123.
[7] C. O. Horgan and L. E. Payne, On the asymptotic behavior of solution of linear second order boundary problem on a semi-infinite strip, Arch. Rational Mech. Anal., 124(1993),277.
[8] Lin Changhao and L. E. Payne, Phragmen-Lindelöf type results for seconn order quasilinear parabolic equation in R2, Z. Angew Math. Phys, 45(1994), 294.
[9] Lin Changhao, Spatial decay estimates and energy bounds for the Stokes flow equation, SAACM, 2(1992), 249. |