[1] R. J. Williams, Sufficient conditions for Nash equilibria in N-person games over reflexive Banach spaces, J. Optim. Theory and appl., 30 (1980), 383-394.
[2] J. Yu, On Nash equilibria in N-person games over reflexive Banach spaces, J. Optirn. Theorv acrd Appl., 73 (1992), 211-214.
[3] J. C. Yao, Nash equilibria in N-.person games with convexity, Appl. .Lfath. Zett., 6.5(1992), 67-69.
[4] K. K. Tan and J. Yu, New minimax inequality with applications to existence theorems of equilibrium points, J. Optim. Theory and Appl., 82(1994), 105-120.
[5] D. Ghose and U. R. Prasad, Solution concepts in two-person multicriteria games, J. Ovtim. Theory and ADUI., 63(1989),167-189.
[6] F. Szidarovszky, M. E. Gershou and L. Duckstein, Techniques forhlultiobjective Decision Making in Svstems Management, Elsevier, Amsterdam (1986).
[7] R. V. Khachatryan, Dynamically stable optimality principle in multicriteria multistep game. Dokl. Akad. Nauk. Arm.,SSR., 86, 1(1988), 23-26. (in Russian)
[8] S. Y. Wang, An existence theorem of a Pareto equilibrium, Appl..Yfath. Lett., 4, 3 (1991), 61-63.
[9] K. C. Border, Fired Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge (1985).
[10] J. X. Zhou and G. Chen, Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl., 13;a (1988), 213-225.
[11] G. Tian, Generalizations of the FKKM theorem and the Fan minimax inequality with applications to maximal elements, price equilibrium and complementarily, J. Math, Anal. Appl. 170 (1992), 457-471.
[12] X. P. Ding, New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements, Indian J. Pure and Appl. Math., 26, 1 (1995), 1-19.
[13] X. P. Ding, Best approximation and coincidence theorems, J. Sichuan Normal University, 18, 2 (1995), 21-29.
[14] Fan Ky, A miximax inequality and applications, Inequalities III, Ed. by O. Shisha Acad. Press, New York(1972), 103-113.
[15] G. Allen, Variatiooal inequalities, complementarity problems, and duality theorems, J. Math. Anal. Appl., 58 (1977), 1-10. |