[1] W. H. Steeb. W. Erig and A, Kunick. Chaotic behaviour and limit cycle behaviour ofanharmonic systems with periodic external perturbations, Physics Letters A, 93, 6 (1983),267-270. [2] S. Sato, M. Sano and Y. Sawada, Universal scaling property in bifurcation structure ofDuffing's and generalized Duffing 's equation, Physical Review A, 28, 3 (1983), 1654-1658. [3] Y. Ueda and N. Slamatsu, Chaotically transitional phenomena in the forced negativeresistance oscillator, Institute of Electrical Engineers Transactions on Circuits System,CAS-28, 2 (1981), 217-223. [4] Q. S. Lu and C. W. S. To, Principle resonance of a nonlinear system with two-frequencyparametric and self-excitations, Nonlinear Dynamics, 2, 6 (1991), 419-444. [5] Lu Qishao and Huang Kelei, Nonlinear dynamics, bifurcation and chaos, Proceedings ofthe Prospects of Chinese General Mechanics, Harbin (1993), 11-18. (in Chinese). [6] K. Yagasaki, M. Sakata and K. Kimura, Dynamics of weakly nonlinear system subjectedto combined parametric and external excitation, Trans. ASME, J. Appl. Mech., 57, 1(1990), 209-217. [7] K. Yagasaki, Chaos in weakly nonlinear oscillator with parametric and externalresonance, Trans. ASME, J. Appl.Mech. 58. 1 (1991), 244-250. [8] K. Yagasaki, Chaotic dynamics of a quasi-periodically forced beam, Trans. ASME. J.Appl. Mech., 59. 1 (1 992), 161-167. [9] Chen Yushu and Wang Deshi. The chaos motion of beam with axial excitation, J.Nonlinear Dynamics in Engineering, 1, 2 (1993). 124-135. (in Chinese). [10] A. Y. T. Leung and T. C. Fung, Construction of chaotic regions, J. Sound Vib., 131, 3(1989), 445-455. [11]Szemplinska-Stupnicka and Bajkowski. The 1/2 subharmonic resonance its transition tochaos motion in a nonlinear oscillator, IFTR Reports 4, 1 (1986), 67-72. [12] R. Van Dooren. On the transition from regular to chaotic behaviour in the Duffingoscillator. J. Sound Vib., 123. 2 (1988). 327-339. [13] T. Kapitaniak, Combined bifurcations and transition to chaos in a nonlinear oscillatorwith two external periodic forees. J. Sound Vib.121, 2 (1988), 259-268. [14] T. Kapitaniak. Chaotic distribution of nonlinear systems perturbed by random noise.Physical Lefters A. 116, 6 (1986). 251-254. [15] T. Kapitaniak, A property of a stochastic response with bifurcation to nonlinear system.J. Sound Vib., 107. 1 (1986). 177-180. [16] V. I. Arnold, Ordinary Differential Equation. M. I. T. Press (1973), 22-26, 48-52. [17] A. H. Nayfeh and D. T. Mook. Perturbation Methods. John Wiley & Sons, New York(1979), 300-313. [18] R. Raty and J. Von Boehm, Absence of inversion-symmetric limit cycles of even periodand chaotic motion of Duffing oscillator. Physics Letters A. 103, 6 (1984), 288-292. |