[1] Henry D. I. Abarbanel, Prediction in chaotic nonlinear systems methods for timeserieswith broadband Fourier spectril, Phys. B, 5 (1991), 1347-1375.
[2] J. Luis Cabrera and F. Javier, Numerical analysis of transient behavior in the discreterandom Logistic equation with delay, Phys. Lett. A, 197 (1995), 19-24.
[3] Peter Grassberger, Fininte sample corrections to entropy and dimension estimates, Phys.Lett. A, 125 (1988), 369-373.
[4] James Thener, Stephen Eubank, et. al., Testing for nonlinearity in time series the method ofsurrogate data, Physica D, 58 (1992), 77-94.
[5] Dean Prichard, The correlation dimension of differenced data, Phys. Lett. A, 191 (1994),245-250.
[6] James Thener, Spurious dimension from correlation algorithms applied to limited timeseries data. Phys. Rev. A. 34 (1986), 2427-2432.
[7] S. Rombouts, R. Keunen, Investigation of nonlinear structure in multichannel EEG.Phys. Lett. A, 202 (1995), 352-358.
[8] Matthew B. Kennel and Strven Isabelle, Method to distinguish possible chaos fromcolored noise and to determine embedding parameters, Phys. Rev. Lett. A. 46 (1992),3111-3118.
[9] P. E. Rapp and A. M. Albano, Filtered noise can mimic low-dimensional chaoticattractors, Phys. Rev. E, 47 (1993), 2289-2297.
[10] Dean Prichard Generating surrogate data for time series with several simultaneouslymeasured variables, Phys. Rev. Lett., 191 (1994), 230-245.[11] P. E. Rapp and A. M. Albano, Phase-randomized surrogates can produce spuriousidentifications of non-random structure, Phys. Lett. A, 192 (1994), 27-33.
[12] M. Casdagli and Alistair Mees, Modeling chaotic motions of a string from experimentaldata, Phys. Rev. E, 54 (1992), 303-328.
[13] P. E. Rapp and A. M. Albano, Predicting chaotic time series, Phys. Rev. E, 47 (1993),2289-2297.
[14] Eric J. Kostelich, Problems in estimating dynamics from data, Phys. D, 58 (1992), 138-152.
[15] S. J. Schiff and T. Chang, Information transport in temporal systems, Phys. Rev. Lett.A, 67 (1992), 378-393.
[16] James Thener, Some comments on the correlation dimension of noise, Phys. Lett. A, 155(1991), 480-493.
[17] J. Timonen and H. Koskinen, An improved estimator of dimension and sonic commentson providing confidence intervals, Geophys. Res. Lett., 20 (1993), 1527-1536
[18] D. Prichard and C. P. Price, Reconstructing attractors from scalar time series: Acomparison of singular system and redundancy criteria. Geophys. Res., 20 (1993). 2817-2825. |