[1] X. P. Ding, Perturbed proximal point algorithm for generalized quasivariationalinclusions, J. Math. Anal. Appl., 210, 1 (1997), 88-101. [2] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math.Anal. Appl., 185, 3 (1994), 706-721. [3] D. Chan and J. S. Pang, The generalized quasivariational inequalitics, Math. Oper. Res.,7, 2 (1982), 211-222. [4] X. P. Ding, Generalized strongly nonlinear quasivariational inequalities. J. Math. Anal.Appl., 173, 2 (1993), 577-587. [5] X. P. Ding, A new class of generalized strongly nonlinear qusasivariational inequalitiesand quasicomplementarity problems, Indian J. Pure Appl. Math., 25, 10 (1994), 1115-1128. [6] X. P. Ding and E. Tarafdar, Monotone generalized variational inequalities andgeneralized complementarity problems, J. Optim. Theory Appl., 88, 1 (1996), 107-122. [7] S. C. Fang and E. L. Peterson, Generalized variational inequalities, J. Optim. Theory Appl., 38. 2 (1982), 363-383. [8] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinearcomplementarity problems: A survey of theory, algorithm and applications, Math.Program, 48 (1990), 161-220. [9] M. A. Noor, An iterative scheme for a class of quasivariational inequalities, J. Math.Anal. Appl., 110 (1985), 462-468. [10] M. A. Noor, Generalized multivalued quasivariational inequalities, Computers Math.Appl., 31, 12 (1996), 1-13. [11] M. A. Noor, K. I. Noor and T. M. Rassias, Some aspects of variational inequalities, J.Comput. Appl. Math., 47, 2 (1993), 285-312. [12] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff andNoordhoff inter. Pub. Romania (1978). [13] R. Saigal, Extension of the generalized complementarity problem, Math. Oper. Res., 1, 2(1976), 260-266. [14] L. Zeng, Iterative algorithm for finding approximate solutions to completely generalizedstrongly nonlinear quasivariational inequalities, J. Math. Anal. Appl., 201, 1 (1996),180-194. |