[1] J. Weiss, M. Tabor and G. Carnevale, The Painleve property for partial differentialequations, J. Math. Phys., 24, 3 (1983), 522. [2] G. Z. Tu, Backlund transformation and conservation law, Acta. Math. Appl. Sinica, 4, 1(1981), 63-68. (in Chinese). [3] Y. Cheng, et al, Connections among symmetries, Backlund transformation and Painleveproperty, Acta. Math. Appl. Sinica, 14, 2 (1991), 180-184. (in Chinese). [4] Y. B. Zeng, Recursion operator and Painleve property, Chin. Ann. Math,. 12A, 1 (1991),78-88. (in Chinese). [5] J. Weiss, The Painleve property and Backlund transformations for the sequence ofBoussinesq equations, J. Math. Phys., 26, 2 (1985), 258-269. [6] C. Chou, Backlund transformations of solutions for different equations. Chinese ScienceBulletin, 32, 21 (1987), 1601-1605. (in Chinese). [7] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and InverseScattering, Cambridge University Press (1991), 8-68, 359-420. [8] B. L. Guo, Nonlinear Evolution Equation, Shanghai Science Press (1995), 162-188. (inChinese) |