[1] F. C. Moon and Y. H. Pao, Magnetoelastic buckling of a thin plate, ASME J. Appl.Mech., 35, 1 (1968), 53-58. [2] T. Takagi, J. Taut, Y. Matsubara and I. Mogi, Electromagneto-mechanical couplingeffects for non-ferromagnetic and ferromagnetic structures, Proc. 2nd Int. Whrkshop on Electromagnelic Forces and Related Effects on Blankets and Other Structures Surroundingthe Fission Plasma Torus, Ed. Miya, Tokai, Japan (1993), 81-90. [3] Zhou Youhe and X. J. Zheng, A theoretical model of magnetoelastic buckling for softferromagnetic thin plates, Acta Mechanica Sinica, 12, 3 (1996), 213-224. [4] Y. H. Pao and C. S. Yeh, A linear theory for soft ferromagnetic elastic solids, Int. J.Eng. Sci., 11, 3 (1973), 415-436. [5] A. C. Eringen, Mechanics of Continua, Wiley, New York (1980). [6] A. A. F. Van de Ven, Magnetoelastic buckling of thin plates in a uniform transversemagnetic field, J. Elasticity, 8, 2 (1978), 279-312. [7] Y. H. Zhou and K. Miya, A theoretical prediction of natural frequency of aferromagnetic beam-plate with low susceptibility in in-plane magnetic field, ASME J.Appl. Mech., 65, 1 (1998). [8] Y. H. Zhou and X. J. Zheng, A general expression of magnetic force for softferromagnetic plates in complex magnetic fields, Int. J. Eng. Sci., 35, 15 (1998), 1405-1417. [9] F. C. Moon, The mechanics of ferroelastic plates in a uniform magnetic field, ASME. J.Appl. Mech., 37, 1 (1970), 153-158. [10] Zhang Yunzhen and Cao Fuxin, Finite Element Methods in Elesticity, China RailwayPublishing House (1983). (in Chinese). [11] Zhou Youhe, Zheng Xiaojing and Kenzo Miya, A generalized variational principle ofmagnetoelastic interaction for ferromagnetic thin plates and its applications, Presented at19th ICTAM, Kyoto, Japan, August, 25-31 (1996). |