[1] Browder F. The fixed pointtheory of multivalued mappings in topological vector space[J]. Math Ann,1968,177:183~301.
[2] Zhang Shisheng. The Theory of Variational Inequalities and Complement-Arity ProblemsWith Applications [M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House,1991.(in Chinese)
[3] Tarafdar E. On nonlinear variationalinequalities[J]. Proc Amer Math Soc,1977,67:95~98.
[4] Tarafdar E. Afixed pointtheorem equivalentto Fan-Knaster-Kuratowski-Mazurkieweicz’stheorem[J]. J Math Anal Appl,1987,128:475~479.
[5] Tarafdar E. Five equivalenttheorems on a convex subset of a topological vector spaces[J]. Comment Math Univ Carolinae,1989,30(2):323~326.
[6] Tian G Q. Generalizations of K K Mtheorem and the Ky Fan minimax inequality with applicationsto maximal elements,price equilibrium and complementarity[J]. J Math Anal Appl,1992,170:457~471.
[7] Chang Shih-sen, Cho Y J, Wu X, Zhang Y. Thetopological versions of K K Mtheoremand Fan’s matching theorem with applications[J]. Topological Methods in Nonlinear Anal,1993,1:231~245.
[8] Kindler J. Topologicalintersectiontheorems[J]. Proc Amer Math Soc,1993,117:1003~1011.
[9] Allen G. Variationalinequalities,complementarity problems and duality theorem[J]. J Math Anal Appl,1977,58:1~10.
[10] Fan Ky. A minimax inequality and applications [A]. In: Shisha O Ed. Inequalities Ⅲ[C]. Academic Press,1972.
[11] Fan Ky. Ageneralization of Tychonoff’s fixed pointtheorem[J]. Math Ann,1961,141:303~310.
[12] Fan Ky. Some properties ofconvex setsrelatedto fixed pointtheorems [J]. Math Ann,1984,266:519~537. |