Applied Mathematics and Mechanics (English Edition) ›› 2000, Vol. 21 ›› Issue (11): 1282-1291.
马世旺1,2, 王志成2, 庾建设2
收稿日期:1998-03-25
修回日期:2000-04-12
出版日期:2000-11-18
发布日期:2000-11-18
基金资助:MA Shi-wang1,2, WANG Zhi-cheng2, YU Jian-she2
Received:1998-03-25
Revised:2000-04-12
Online:2000-11-18
Published:2000-11-18
Supported by:摘要: The nonlinear system of first-order differential equations with a deviating argument
x(t)=Bx(t)+F(x(t-τ))+p(t)
is considered,where x(t)∈R2,τ∈R,B∈R2×2,F is bounded and p(t)is continuous
and 2π-periodic.Some sufficient conditions for the existence of 2π-periodic solutions of the above equation,in a resonance case,by using the Brouwer degree theory and a continuation theorem based on Mawhin's co incidence degree are obtained.Some applications of the main results to Duffing's equations are also given.
中图分类号:
马世旺;王志成;庾建设. THE EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR SYSTEMS OF FIRST-ORDER DIFFERENTIAL EQUATIONS AT RESONANCE[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(11): 1282-1291.
MA Shi-wang;WANG Zhi-cheng;YU Jian-she. THE EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR SYSTEMS OF FIRST-ORDER DIFFERENTIAL EQUATIONS AT RESONANCE[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(11): 1282-1291.
| [1] Hale J K. Ordinary Differential Equations[M].New York: Wiley Interscience,1969. [2] Nagle R K. Nonlinear boundary value problems for ordinary differen tial equations with a small parameter[J]. SIAM J Math Analysis,1978,9(3):719-729. [3] Mawhin J. Landesman-Lazter's type problems for nonlinear equations[A]. In: Conferenze Seminario Matematica[M]. Di Bari: Dell Universita,19 77,147. [4] Fucik S. Solvability of Nonlinear Equations and Boundary Value P roblems[M]. Dordrecht,Holland: D.Reidel Publishing,1980. [5] Nagle R K, Sinkala Z. Existence of 2π-periodic solutions for nonl inear systems of first-order ordinary differential equations at resonance[J]. Nonlinear Analysis(TMA),1995,25(1):1-16. [6] MA Shi-wang, WANG Zhi-cheng, YU Jian-she. Coincidence degree and p eri odic solutions of Duffing equations[J]. Nonlinear Analysis(TMA),1998,34(2):443-460. [7] Lazer A C, Leach D E. Bounded perturbations of forced harmonic osc illations at resonance[J] , Ann Mat Pura Appl,1969,82(1):4 9-68. [8] Schuur J D. Perturbation at resonance for a fourth order ordinary differential equation[J]. J Math Anal Appl,1978,65(1):20 -25. [9] DING Tong-ren.Nonlinear oscillations at a point of resonance[J].Sci China Series A,1982,(1):1~13.(in Chinese). [10] HAO Dun-yuan, MA Shi-wang. Semilinear Duffing equations crossing resonance points[J]. J Differential Equations,1997,133(1):98-116. [11] Mawhin J. Equivalence theorems for nonlinear operator equations a nd coincidence degree theory for some mapping in locally convex topological vect or spaces[J]. J Differential Equations,1972,12(2):610-6 36. [12] Mawhin J. Topological Degree Methods in Nonlinear Boundary Valu e Problems CBMS[M]. Providence RI: Amer Math Soc,1979,40. [13] Deimling K. Nonlinear Functional Analysis[M]. New York: Sp ringer-Verlag,1985. |
| [1] | Shujun YOU, Boling GUO. Global solution for quantum Zakharov equations[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 603-616. |
| [2] | Shan JIANG, Longxiang DAI, Hao CHEN, Hongping HU, Wei JIANG, Xuedong CHEN. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. |
| [3] | Lihua LIU, Chaolu TEMUER. Symmetry analysis of modified 2D Burgers vortex equation for unsteady case[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 453-468. |
| [4] | W. PAULSEN, M. MANNING. Finding vibrations of inclined cable structures by approximately solving governing equations for exterior matrix[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1383-1402. |
| [5] | A. K. VASHISHTH, A. DAHIYA, V. GUPTA. Generalized Bleustein-Gulyaev type waves in layered porous piezoceramic structure[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1223-1242. |
| [6] | A. M. SIDDIQUI, H. ASHRAF, A. WALAIT, T. HAROON. On study of horizontal thin film flow of Sisko fluid due to surface tension gradient[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 847-862. |
| [7] | Zhijie SHI, Yuesheng WANG, Chuanzeng ZHANG. Band structure calculations of in-plane waves in two-dimensional phononic crystals based on generalized multipole technique[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(5): 557-580. |
| [8] | Wancheng SHENG;Ying ZENG. Generalized δ-entropy condition to Riemann solution for Chaplygin gas in traffic flow[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 353-364. |
| [9] | Yinshan YUN;Chaolu TEMUER. Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 365-378. |
| [10] | Chao MIN;Nanjing HUANG;Zhibin LIU;Liehui ZHANG. Existence of solutions for implicit fuzzy differential inclusions[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 401-416. |
| [11] | 陈学慧;郑连存;张欣欣. MHD flow of power-law fluid on moving surface with power-law velocity and special injection/blowing[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1555-1564. |
| [12] | 杨曼丽;卢志明;刘宇陆. Self-similar behavior for multicomponent coagulation[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1353-1360. |
| [13] | 高军;罗纪生. Mode decomposition of nonlinear eigenvalue problems and application in flow stability[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 667-674. |
| [14] | H. YASMIN;T. HAYAT;A. ALSAEDI;H. H. ALSULAMI. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 697-716. |
| [15] | 张燕 林平 司新辉. Perturbation solutions for asymmetric laminar flow in porous channel with expanding and contracting walls[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(2): 203-220. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

Email Alert
RSS