Applied Mathematics and Mechanics (English Edition) ›› 2001, Vol. 22 ›› Issue (4): 495-500.

• 论文 • 上一篇    

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER SINGULAR NONLINEAR DIFFERENTIAL EQUATIONS

李仁贵, 刘立山   

  1. Department of Mathematics, Qufu Normal University, Qufu 273165, P R China
  • 收稿日期:2000-01-17 修回日期:2000-03-03 出版日期:2001-04-18 发布日期:2001-04-18

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER SINGULAR NONLINEAR DIFFERENTIAL EQUATIONS

LI Ren-gui, LIU Li-shan   

  1. Department of Mathematics, Qufu Normal University, Qufu 273165, P R China
  • Received:2000-01-17 Revised:2000-03-03 Online:2001-04-18 Published:2001-04-18

摘要: New existence results are presented for the singular second-order nonlinear boundary value problems u″+g(t)f(u)=0, 0<t<1, αu(0)-βu′(0)=0, γu(1)+ δu′(1)=0 under the conditions 0≤f0+<M1, m1<f-≤∞ or 0≤f+<M1, m1<f0-≤∞, where f0+= limu→0 f(u)/u, f-= limu→∞ f(u)/u, f0-= limu→0 f(u)/u, f+= limu→∞ f(u)/u, g may be singular at t=0 and/or t=1 The proof uses a fixed point theorem in cone theory.

关键词: second-order singular boundary value problems, positive solutions, cone, fixed point

Abstract: New existence results are presented for the singular second-order nonlinear boundary value problems u″+g(t)f(u)=0, 0<t<1, αu(0)-βu′(0)=0, γu(1)+ δu′(1)=0 under the conditions 0≤f0+<M1, m1<f-≤∞ or 0≤f+<M1, m1<f0-≤∞, where f0+= limu→0 f(u)/u, f-= limu→∞ f(u)/u, f0-= limu→0 f(u)/u, f+= limu→∞ f(u)/u, g may be singular at t=0 and/or t=1 The proof uses a fixed point theorem in cone theory.

Key words: second-order singular boundary value problems, positive solutions, cone, fixed point

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals