[1] ZHANG Gui. Nonlinear stability theorem for the generalized Phillips Mode[J]. Journal of the Air Force Institute of Meteorology, 1999,20 (2): 133-143. (in Chinese) [2] ZHANG Gui, XIANG Jie, LI DONG-hui. Nonlinear stauration of baroclinic instability in the Gen eralized Phillips model (Ⅰ)-The upper bound on the evolution of disturbance to the nonlinearly unstable basic flow[J]. Applied Mathematics and Mechanics (English Edition) ,2002,23(1): 79-88. [3] Shepherd T G. Nonlinear saturation of baroclinic instability, Part-one: the two-layer model[J]. Journal of the Atmospheric Sciences, 1988,45(14):2014-2025. [4] Shepherd T G. Nonlinear saturation of baroclinic instability, Part-two: Continuously-statified fluid[J]. Journal of the Atmospheric Sciences, 1989,46(7):888-907. [5] Shepherd T G. Nonlinear saturation of baroclinic instability, part-three: bounds on the energy[J]. Journal of the Atmospheric Sciences, 1993,50(16):2697-2709. [6] MU Mu. Nonlinear stability theorem of two-dimensional quasi-geostrophic motions, geophys, As trophy[J]. Fluid Dynamics, 1992,65 (1):57-76. [7] Paret J, Vanneste J. Nonlinear saturation of baroclinic instability in a three-layer model[J]. Journal of the Atmospheric Sciences, 1996,53 (20): 2905-2917. [8] Cho H R, Shepherd T G, Vladimirov V A. Application of the direct Liapunov method to the prob lem of symmetric stability in the atmosphere[J]. Journal of the Atmospheric Sciences, 1993,50(6): 822-834 [9] MU Mu, Shepherd T G, Swanson K. On nonlinear symmetric stability and the nonlinear saturation f symmetric instability[J]. Journal of the Atmospheric Sciences, 1996,53(20):2918-2923. [10] ZENG Qing-cun. Variational Principle of instability of atmospheric motions[J]. Adv Atmos Sci, 1989,6(2):137-172. [11] XIANG Jie, MU Mu. Lower bound of disturbances for the nonlinearly unstable basic flow in the phillips model[A]. In: CHIEN Wei-zang, Ed. Proceeding of the Third International Conference on Nonlinear Mechanics[C]. Shanghai, 1998: 548-553. |