[1] Chen G,Dong X. From Chaos to Order: Perspectives, Methodologies and Applications[M]. Singapore: World Scientific Press, 1998.
[2] LU Jin-hu,LU Jun-an,CHEN Shi-hua. Chaotic Time Series Analysis and Its Application [M]. Wuhan: Wuhan University Press,2002.(in Chinese)
[3] CHEN Shi-hua,LU Jun-an. The Introduction to Chaotic Dynamics[M]. Wuhan:Wuhan University of Hydraulic and Electric Engineering Press, 1998.(in Chinese)
[4] Ott E,Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett,1990,64(11):1196-1199.
[5] Fun C C,Tung P C. Controlling chaos using differential geometric method[J]. Phys Rev Lett, 1995,75(16):2952-2955.
[6] Sanchez E N, Perez J P.Martinez M, et al. Chaos stabilization:an inverse optimal control approach [J]. Latin Amer Appl Res,2002,32(1):111-114.
[7] LU Jin-hu,ZHANG Suo-chun. Controlling Chen' s chaotic attractor using backstepping design based on parameters identification[J]. Phys Lett A,2001,286(2/3): 148-152.
[8] LU Jin-hu,ZHOU Tian-shou,ZHANG Suo-chun. Controlling Chen's chaotic attractor using feedback function based on parameters identification[J]. Chinese Physics,2002,11(1):12-16.
[9] Yang T, Chua L O. Control of chaos using sampled-data feedback control[J]. Int J Bifurcation and Chaos,1998,8(12):2433-2438.
[10] Guo S M, Shieh L S, Chen G, et al. Ordering chaos in Chua' s circuit: a sampled data feedback and digital redesign approach[J]. Int J Bifurcation and Chaos,2000,10(9):2221-2231.
[11] YANG Ling, LIU Zeng-rong, MAO Jian-min. Controlling hyperchaos[ J]. Phys Rev Lett, 2000,84 (1):67-70.
[12] MAO Jian-min, LIU Zeng-rong, YANG Ling. Straight-line stabilization[J]. Phys Rev E, 2000,62 (4):4846-4849.
[13] YANG Ling,LIU Zeng-rong. An improvement and proof of OGY method[J]. Applied Mathematics and Mechanics (English Edition), 1998,19(1): 1-8.
[14] Lorenz E N. Deterministic non-periodic flows[J].J Atmos Sci, 1963,20(1): 130-141.
[15] Stewart I. The Lorenz attractor exists[J]. Nature,2000,406(6799):948-949.
[16] Chen G,Ueta T. Yet another chaotic attractor[J]. Int J Bifurcation and Chaos, 1999,9(7):1465-1466.
[17] Vanecek A, Celikovsky S. Control Systems: From Linear Analysis to Synthesis of Chaos [M]. London: Prentice-Hall, 1996.
[18] LU Jin-hu,CHEN Guan-rong. A new chaotic attractor coined[J]. Int J Bifurcation and Chaos, 2002,12(3):659-661.
[19] LU Jin-hu, CHEN Guan-rong, ZHANG Suo-chun. Dynamical analysis of a new chaotic attractor [J]. Int J Bifurcation and Chaos,2002,12(5): 1001-1015.
[20] ZHOU Zhi-ming. A new chaotic auti-control model-Lu system[J]. J of Xianning Techers Coll-lege, 2002,22(3): 19-21.(in Chinese)
[21] LU Jin-hu,CHEN Guan-rong,CHENG Dai-zhan, et al. Bridge the gap between the Lorenz system and the Chen system[J]. Int J Bifurcation and Chaos,2002,12(12):2917-2926.
[22] Wilkinson J. The Algebraic Eigenvalue Prohlem[M]. Oxford:Clarendon Press, 1965. |