[1] Cantrell R S, Consner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments Ⅱ [J]. SIAM JMath Anal,1991,22(4):1043-1064.
[2] Diaz J I, Kersner R. On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium[J]. J Differential Equations, 1987,69(3):368-403.
[3] Anderson J R, Deng K. Global existence for degenerate parabolic equations with a nonlocal forcing [J]. Math Mech Appl Sci,1997,20(13): 1069-1087.
[4] Furter J,Grinfeld M. Local vs. non-local interactions in population dynamics[J]. J Math Biology, 1989,27(1):65-80.
[5] Chadam J M, Peirce A, Yin H M. The blow-up property of solutions to some diffusion equations with localized nonlinear reactions[J]. J Math Anal Appl, 1992., 169(2):313-328.
[6] Souplet Ph. Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source[J].J Differential Equations, 1999,153(2):374-406.
[7] Souplet Ph. Blow up in nonlocal reaction-diffusion equations[J]. SIAM J Math Anal, 1998,29(6): 1301-1334.
[8] WANG Ming-xin, WANG Yuan-ming. Properties of positive solutions for non-local reaction-diffusion problems[J]. Math Mech Appl Sci,1996,19(4):1141-1156.
[9] WANG Shu, WANG Ming-xin,XIE Chun-hong.Nonlinear degenerate diffusion equation not in divergence form[J]. Z Angew Math Phys, 2000,51 (1):149-159.
[10] Friedman A, McLeod B. Blow-up of solutions of nonlinear degenerate parabolic equations [J]. Arch Rational Mech Anal, 1987,96(1):55-80.
[11] Anderson J R. Local existence and uniqueness of solutions of degenerate parabolic equations[J]. Commun Partial Differential Equations, 1991,16 (1):105-143.
[12] Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York:Plenum Press, 1992. |