Applied Mathematics and Mechanics (English Edition) ›› 2003, Vol. 24 ›› Issue (3): 261-273.
李群宏, 陆启韶
收稿日期:
2001-05-28
修回日期:
2002-12-10
出版日期:
2003-03-18
发布日期:
2003-03-18
基金资助:
LI Qun-hong, LU Qi-shao
Received:
2001-05-28
Revised:
2002-12-10
Online:
2003-03-18
Published:
2003-03-18
Supported by:
摘要: A method is presented to seek for coexisting periodic orbits which may be stable or unstable in piecewise-linear vibro-impacting systems. The conditions for coexistence of single impact periodic orbits are derived, and in particular, it is investigated in details how to assure that no other impacts will happen in an evolution period of a single impact periodic motion. Furthermore, some criteria for nonexistence of single impact periodic orbits with specific periods are also established. Finally, the stability of coexisting periodic orbits is discussed, and the corresponding computation formula is given. Examples of numerical simulation are in good agreement with the theoretic analysis.
中图分类号:
李群宏;陆启韶. COEXISTING PERIODIC ORBITS IN VIBRO-IMPACTING DYNAMICAL SYSTEMS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(3): 261-273.
LI Qun-hong;LU Qi-shao . COEXISTING PERIODIC ORBITS IN VIBRO-IMPACTING DYNAMICAL SYSTEMS[J]. Applied Mathematics and Mechanics (English Edition), 2003, 24(3): 261-273.
[1] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1986. [2] Wigins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos [M].(Reprinted) . New York: Springer-Verlag, 1991. [3] Wiggins S. Global Bifurcations and Chaos,Analytical Methods[M].New York: Springer-Verlag,1988. [4] Bazejczyk-Okolewska B, Kapitaniak T. Co-existing attractors of impact oscillator[J]. Chaos, Solitons & Fractals, 1998,9(8): 1439-1443. [5] Feudel U, Grebogi C, Poon L, Yorke J A. Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors[J]. Chaos, Solttons & Fractals, 1998,9(1/2):171-180. [6] Whiston G S. Global dynamics of a vibro-impacting linear oscillator[J]. J Sound Vib, 1987,118(3):395-424. [7] Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator[J].J Sound Vib,1983,90(1):129-155. [8] Ivanov A P. Stabilization of an impact oscillator near grazing incidence owing to resonance[J]. J Sound Vib, 1993,162(3): 562-565. [9] Whiston G S. Impacting under harmonic excitation[J].J Sound Vib,1979,67(2):179-186. [10] Whiston G S. The vibro-impact response of a harmonically excited and preloaded one-dimensional linear oscillator[J]. J Sound Vib, 1987,115(2): 303-319. [11] Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator[J]. J Sound Vib, 1991,145(2):279-297. [12] Foale S, Bishop S R. Dynamical complexities of forced impacting systems [J]. Phil Trans Royal Soc London A, 1992,338(4):547-556. [13] Nordmark A B. Effects due to low velocity in mechanical oscillators [J]. Int ,J Bifurcation and Chaos, 1992,2(3):597-605. [14] Shaw S W, Rand R H. The transifion to chaos in a simple mechanical system[J]. Int J Nonlinear Mech, 1989,24(1):41-56. |
[1] | Shujun YOU, Boling GUO. Global solution for quantum Zakharov equations[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 603-616. |
[2] | Shan JIANG, Longxiang DAI, Hao CHEN, Hongping HU, Wei JIANG, Xuedong CHEN. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. |
[3] | Lihua LIU, Chaolu TEMUER. Symmetry analysis of modified 2D Burgers vortex equation for unsteady case[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 453-468. |
[4] | W. PAULSEN, M. MANNING. Finding vibrations of inclined cable structures by approximately solving governing equations for exterior matrix[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(11): 1383-1402. |
[5] | A. K. VASHISHTH, A. DAHIYA, V. GUPTA. Generalized Bleustein-Gulyaev type waves in layered porous piezoceramic structure[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1223-1242. |
[6] | A. M. SIDDIQUI, H. ASHRAF, A. WALAIT, T. HAROON. On study of horizontal thin film flow of Sisko fluid due to surface tension gradient[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 847-862. |
[7] | Zhijie SHI, Yuesheng WANG, Chuanzeng ZHANG. Band structure calculations of in-plane waves in two-dimensional phononic crystals based on generalized multipole technique[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(5): 557-580. |
[8] | Wancheng SHENG;Ying ZENG. Generalized δ-entropy condition to Riemann solution for Chaplygin gas in traffic flow[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 353-364. |
[9] | Yinshan YUN;Chaolu TEMUER. Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 365-378. |
[10] | Chao MIN;Nanjing HUANG;Zhibin LIU;Liehui ZHANG. Existence of solutions for implicit fuzzy differential inclusions[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 401-416. |
[11] | 陈学慧;郑连存;张欣欣. MHD flow of power-law fluid on moving surface with power-law velocity and special injection/blowing[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1555-1564. |
[12] | 杨曼丽;卢志明;刘宇陆. Self-similar behavior for multicomponent coagulation[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1353-1360. |
[13] | 高军;罗纪生. Mode decomposition of nonlinear eigenvalue problems and application in flow stability[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 667-674. |
[14] | H. YASMIN;T. HAYAT;A. ALSAEDI;H. H. ALSULAMI. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary condition[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 697-716. |
[15] | 张燕 林平 司新辉. Perturbation solutions for asymmetric laminar flow in porous channel with expanding and contracting walls[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(2): 203-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||