[1] Nash J F. Equilibrium point in n-person games[J]. Proc Nat Acad Sci USA, 1950,36(1):48-49.
[2] Nash J F. Noncooperative games[J]. Ann Math, 1951,54(2):286-295.
[3] Szi darovszky F M E, Gershon M E, Duckstein L. Techniques for Multiobjective Decision Marking in System Management[M]. Amsterdam Holland: Elsevier, 1986.
[4] Zeleny M. Game with multiple payoffs[J]. Internat J Game Theory, 1976,4(2): 179-191.
[5] Bergstresser K, Yu P L. Domination structures and multicriteria problem in N-person games[J].Theory and Decision, 1977,8(1):5-47.
[6] Brom P E M, Tijs S H, Van Den Aarssen J C M. Pareto equilibrium in multiobjective games[J].Methods of Operations Research, 1990,60(2): 303-312.
[7] Yu P L. Second-order game problems: Decision dynamics in gaming phenomena[J]. J Optim Theory Appl, 1979,27(1): 147-166.
[8] Chose D, Prasad U R. Solution concepts in two-person multicriteria games[J]. J Optim Theory Appl, 1989,63(1): 167-189.
[9] Wang S Y. An existence theorem of a Pareto equilibrium[J]. ApplMathLett, 1991,4(1):61-63.
[10] Wang S Y. Existence of a Pareto equilibrium[J]. JOptim TheoryAppl, 1993,79(2):373-384.
[11] DING Xie-ping. Pareto equilibria of multicriteria games without compactness, contin uity and concavity[J]. Applied Mathematics and Mechanics(English Edition), 1996,17(9):847-854.
[12] DING Xie-ping. Existence of Pareto equilibria for constrained multiobjective games in H-space[J]. Comput Math Appl, 2000,39(9):125-134.
[13] DING Xie-ping. Constrained multiobjective games in general topological space[J]. Comput Math Appl, 2000,39(3/4):23-30.
[14] YUAN Xian-zhi, Tarafdar E. Non-compact Pareto equilibria for multiobjective games[J]. J Math Anal Appl, 1996,204(1): 156-163.
[15] YU Jiao, YUAN Xian-zhi. The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods[J]. Comput Math Appl, 1998,35(9):17-24.
[16] WU Xian. Approximate selection theorems in H-spaces with application[J]. J Math Anal Appl,1999,231(1):118-132.
[17] TIAN Guo-qiang, ZHOU Jian-xin. Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full c haracterization[J]. J Math Economics, 1995,24(2):281-303.
[18] Bardaro C, Ceppitelli L. Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities[J]. J Math Anal Appl, 1988,132(3):484-490.
[19] Bardaro C, Ceppitelli L. Applications of generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities[J]. J Math Anal Appl, 1989,137(1):46-58.
[20] Horvath C. Points fixes et coincidences dans les espaces topologiques compacts contractiles[J]. C R Acad Sci Paris, 1984,299:519-521.
[21] Horvath C. Some results on multivalued mappings and inequalities without convexity[A]. In: Lin B L, Simons S Eds. Nonlinear and Convex Analysis: Lecture Notes in Pure and Applied Mathematics[C]. Vol 107, New York: Dekker, 1987,99-106.
[22] Aubin J P. Mathematical Methods of Game and Economic Theory[M]. Amsterdam: NorthHolland, 1982.
[23] Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York: Wiley, 1984.
[24] DING Xie-ping. Quasi-variational inequalities and social equilibrium[J]. Applied Mathematics and Mechanics(English Edition), 1991,12(7):639-646.
[25] DING Xie-ping. Generalized quasi-variational inequalities, optimization and equilibrium problems[J]. J Sichuan Normal Univ, 1998,21(1):22-27.
[26] TIAN Guo-qiang. Generalizations of the FKKM theorem and the Fan minimax inequality with applications to maximal elements, price equilibrium and complementarity[J]. J Math Anal Appl,1992,170(2):457-471.
[27] YUAN Xian-zhi, Isac G, Tan K K, et al. The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria[J]. Acta Appl Math, 1998,54(1):135-166.
[28] Tarat dar E. A fixed point theorem in H-space and related results[J]. Bull Austral Math Soc,1990,42(1):17 40.
[29] Massey W S. lar Homology Theory[M]. New York: Springer-Verlag, 1980.
[30] Fan Ky. Fixed nts and minimax theorems in locally convex spaces[J]. Proc Nat Acad Sci USA, 1952,38:.21-126. |