[1] Smale S. Differentiable dynamical systems[J]. Bull Amer Math Soc, 1967,73:747 - 817.
[2] LI Ming-jun,LI Kai-tai. A class of symbolic dynamical systems describing chaos maps[J]. Appl Math-JCU, 1999,14(2): 125 - 129. (in Chinese)
[3] MAI Jie-hua. Describe smale horseshoe map by pentimal fraction[J]. Chinese Science Bulletin,1993,38(21):1932 - 1935. (in Chinese)
[4] LIU Zeng - rong. Strange Attractors in Two - Dimensional Planar Maps [M]. Suzhou: Suzhou University Press, 1996,1 - 30. (in Chinese)
[5] Devany R. Chaotic Dynamical Systems [M]. Second Ed. Addisonwesley, Samenvatting:Benjamin Cummings, 1989.
[6] LIU Zeng-rong, QIN Wen-xin, XIE Hui-min, et al. Construction and dynamical behaviour of strange attractor of a class two-dimensional maps[J]. Science in China (Series A), 1993,23(7):702 - 708. (in Chinese)
[7] LIU Zeng-rong, QIN Wen-xin, XIE Hui-min. Construction and dynamical behaviour of Lauwerier attractor[J]. Chinese Science Bulletin, 1992,37(14): 1269 - 1271. (in Chinese)
[8] Edger G A. Measure, Topology and Fractal Geometry [M]. New York, Berlin, Heidelberg:Springer- Verlag, 1990.
[9] ZHENG Wei-mou, HAO Bai-lin. Applied Symbolic Dynamics [M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1994. (in Chinese)
[10] WANG Shu - he. Differential Equation Model and Chaos [M]. Hefei: Chinese Scientific and Technological University Publishing House, 1999. (in Chinese) |