[1] Liberzon A S, Morse A S. Basic problems in stability and design of switched systems [J]. IEEE Contr Syst Mag, 1999, 19(5):59-70.
[2] Ezzine J, Haddad A H. Controllability and observability of hybrid system[J]. Int J Control, 1989, 49(6):2045-2055.
[3] SUN Zhen-dong, ZHENG Da-zhong. On reachability and stabilization of switched linear systems[J]. IEEE Trans Automat Contr, 2001, 46(2):291-295.
[4] XIE Guang-ming, ZHENG Da-zhong. On the controllability and reachability of a class of hybrid dynamical systems[A]. In:QIN Hua-shu Ed. Proceedings of the 19th Chinese Control Conference[C]. Hong Kong:Hong Kong Engineering Counci, 2000, 114-117. (in Chinese).
[5] XIE Guang-ming, WANG Long. Necessary and sufficient conditions for controllability of switched linear systems[A]. In:American Automatic Control Counci Ed. Proceedings of the American Control Conference 2002 [C]. USA:IEEE Service Center, 2002, 1897-1902.
[6] XU Xu-ping, Antsaklis P J. On the reachability of a class of second-order switched systems [A].In:American Automatic Control Counci Ed. Proceedings of the American Control Conference 1999[C]. USA:IEEE Service Center, 1999, 2955-2959.
[7] Ishii H, Francis B A. Stabilization with control networks[J]. Automatica, 2002, 38(10):1745 -1751.
[8] Ishii H, Francis B A. Stabilizing a linear system by switching control with dwell time[A]. In:American Automatic Control Counci Ed. Proceedings of the American Control Conference 2001[C]. USA:IEEE Service Center, 2001, 1876-1881.
[9] Morse A S. Supervisory control of families of linear set-point controllers-Part l:Exact natching[J]. IEEE Trans Automat Contr, 1996, 41(7):1413-1431.
[10] Liberzon D, Hespanha J P, Morse A S. Stability of switched systems:a Lie-algebraic condition[J].Systems and Control Letters, 1999, 37(3):117-122.
[11] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time [A]. In:IEEE Control Systems Society Ed. Proceedings of the 38 th Conference on Decesion and Control [C].USA:IEEE Customer Service, 1999, 2655-2660.
[12] Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A- natrices [J]. IEEE Trans Automat Contr, 1994, 39 (12):2469-2471.
[13] arendra K S, Balakrishnan J. Adaptive control using multiple models[J]. IEEE Trans Automat Contr, 1997, 42 (1):171-187.
[14] Petterson S, Lennartson B. Stability and robustness for hybrid systems[A]. In:IEEE Control Systems Society Ed. Proceedings of the 35th Conference on Decesion and Control[C]. USA:IEEE Customer Service, 1996, 1202-1207.
[15] YE Hong, Michel A N, HOU Ling. Stability theory for hybrid dynamical systems[J]. IEEE Trans Automat Contr, 1998, 43(4):461-474.
[16] HU Bo, XU Xu-ping, Antsaklis P J, et al. Robust stabilizing control laws for a class of second-order switched systens[J]. Systems and Control Letters, 1999, 38(2):197-207.
[17] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems[J]. IEEE Trans Automat Contr, 1998, 43(4):475-482.
[18] Shorten R N, Narendra K S. On the stability and existence of common Lyapunov functions for stable linear switching systems[A]. In:IEEE Control Systems Society Ed. Proceedings of the 37 th Conference on Decesion and Control[C]. USA:IEEE Customer Service, 1998, 3723-3724.
[19] Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov funtions for hybrid systems[J]. IEEE Trans Automat Contr, 1998, 43(4):555-559.
[20] Wicks M A, Peleties P, DeCarlo R A. Construction of piecewise Lyapunov funtions for stabilizing switched systems[A]. In:IEEE Control Systems Society Ed. Proceedings of the 33 th Conference on Decesion and Control [C]. USA:IEEE Customer Service, 1994, 3492-3497.
[21] Peleties P, DeCarlo R A. Asymptotic stability of m- switched systems using Lyapunov-like functions[A]. In:American Automatic Control Counci Ed. Proceedings of the American Control Conference 1991[C]. USA:IEEE Service Center, 1991, 1679-1684. |