[1] Demyanov V F, Stavroulakis G E, Polyakova L N. Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics [M]. Dordrecht: Kluwer Academic Publishers,1996.
[2] Kikuchi N, Oden J T. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[M]. Philadelphia: SIAM, 1988.
[3] ZHONG Wan-xie, ZHANG Hong-wu, WU Cheng-wei. Parametric Variational Principles and Applications in Engineering [M]. Beijing: Science Press, 1997. (in Chinese)
[4] CHEN Guo-qing, CHEN Wan-ji, FENG En-min. Nonlinear complementarity principle for three-dimensional contact problem and solution method[J]. Science in China, Ser A, 1995,25(11): 1181-1190. (in Chinese)
[5] LI Xue-wen, CHEN Wan-ji. Nonsmooth method for solving three-dimensional frictional contact problems[J]. Chinese Journal of Computational Methanics, 2000,17(1):43-49. (in Chinese)
[6] Christensen P W, Klarbring A, Pang J S, et al. Formulation and comparison of algorithms for frictional contact problems [J]. International Journal for Numerical Methods in Engineering, 1998,42: 145-173.
[7] ZHANG Hong-wu, ZHANG Wan-xie, GU Yuan-xian. A combined parametric quadratic programming and iteration method for 3D elastic-plastic frictional contact problem analysis[J]. Comput.Meths. Appl. Mech. 1998,155:307-324.
[8] ZHANG Hong-wu. Parametric variational principle for elastic-plastic consolidation analysis of saturated porous media[J]. Int. J. Numer. Anal. Meths. Geomechanics, 1995,19:851-867.
[9] ZHANG Hong-wu, Schrefler B A. Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: one dimensional model[J]. European Journal of Solid Mechanics, A/Solids, 2000,19 (3): 503-524.
[10] ZHANG Hong-wu. Galvanetto U, Schrefler B A. Local analysis and global nonlinear behaviour of periodic assemblies of bodies in elastic contact [J]. Computational Mechanics, 1999,24 (4): 217-229.
[11] ZHANG Hong-wu, GU Yuan-xian, ZHONG Wan-xie. The finite element analysis for coupled problems between heat transfer and contact processes [J]. Acta Solida Mechanica, 2000,21 (3):217-224. (in Chinese)
[12] Billups S C, Murty K G. Complementarity problems [J]. Journal of Computational and Applied Mathematics, 2000,124: 303-318.
[13] Wright S J. Primal-Dual Interior-Point Methods[M]. Philadelphia: SIAM Publications, 1997.
[14] XIU Nai-hua, Gao Zi-you. The new advances in methods for complementarity problems[J]. Adcances in Mathematics, 1999,28(3): 193-210. (in Chinese)
[15] Ferris M C, Kanzow C. Complementarity and related problems:A survey[A]. In:Pardalos P M,Resende M G C Eds: Handbook on Applied Optimization [C]. New York: Oxford University Press,2002,514-530.
[16] CHEN Chun-hui, Mangasarian O L. Smoothing methods for convex inequalities and linear complementarity problems [J]. Mathematical Programming, 1995,71: 51-69.
[17] CHEN Bing-tong, XIU Nai-hua. A Global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions [J]. SIAM Journal on Optimization, 1999,9:605-623.
[18] Burke J V, XU Song. The global linear convergence of a non-interior path following algorithm for linear complementarity problems [J]. Mathematics of Operations Research, 1998,23: 719-734.
[19] LI Xing-si. An efficient method for non-differentiable optimization problem[J]. Science in China,Ser A, 1994,24(4):371-377. (in Chinese)
[20] Kanzow C. Some noninterior continuation methods for linear complementarity problems[J]. SIAM J Matrix Anal Appl, 1996,17(4):851-868.
[21] Buczkowski R, Kleiber M. Elasto-plastic interface model for 3D-frictional orthotropic contact problems[J]. International Journal for Numerical Methods in Engineering, 1997,40:599-619. |