[1] YU Zhao-sheng, LIN Jian-zhong. Numerical research on the coherent structure in the viscoelastic second-order mixing layers[J]. Applied Mathematics and Mechanics (English Edition), 1998, 19(8): 717-723.
[2] Fetecau C, Fetacau Corina, Zierep J. Decay of a potential vortex and propagation of a heat wave in a second grade fluid[J]. International Journal of Non-Linear Mechanics, 2002,37 (6): 1051-1056.
[3] Bagley R L. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology, 1983,27(3):201-210.
[4] Friedrich C H R. Relaxation and retardation function of the Maxwell model with fractional derivatives[J]. RheolActa, 1991,30(2): 151-158.
[5] HUANG Jun-qi, HE Guang-yu, LIU Ci-qun. Analysis of general second-order fluid flow in double cylinder rheometer[J]. Science in China, Series A, 1997, 40(2): 183-190.
[6] HE Guang-yu, HUANG Jun-qi, LIU Ci-qun. General second order f luid flow in a pipe[J]. Applied Mathematics and Mechanics (English Edition), 1995, 16(9): 825-831.
[7] XU Ming-yu, TAN Wen-chang. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J]. Science in China,Series A, 2001, 44(11): 1387-1399.
[8] XU Ming-yu, TAN Wen-chang. The representation of the constitutive equation of viscoelastic mate rials by the generalized fractional element networks and its generalized solutions[J]. Science in China, Series A, 2002, 32(8): 673-681. (in Chinese)
[9] TAN Wen-chang, XIAN Feng, WEI Lan. An exact solution of unsteady Couette flow of generalized second grade fluid[J]. Chinese Science Bulletin, 2002, 47(21): 1783-1785.
[10] TAN Wen-chang,XU Ming-yu. The impulsive motion of flat plate in a general second grade fluid[J].Mechanics Research Communication, 2002, 29 (1):3-9.
[11] TAN Wen-chang, XU Ming-yu. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model[J]. Acta Mechanica Sinica,2002,18(4):342-349.
[12] TANWen-chang,PANWen-xiao,XUMing-yu. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates[J]. International Journal of Non-Linear Mechanics, 2003,38(5): 645-650.
[13] LI Jian, JIANG Ti-qian. The research on viscoelastic constitutive relationship model with fractional derivative operator[A]. In: Proceeding of Rheology of China[C]. Guangzhou: South China University of Technology Press, 1993. (in Chinese)
[14] Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application[J]. Rheologica Acta, 1998,27(5):512-517.
[15] PodlubnyI. FractionalDifferential Equations[M].SanDiego: Academic Press, 1999, 1-303.
[16] Paradisi P, CesariR, MainardiR, etal. Thefractional Fick'slawfornon-local transport processes[J]. Physica A, 2001,293(1): 130-142.
[17] Necatiozisik M. Heat Conduction[M]. Yu Chang-ming transl. Beijing: Higher Education Publishing House, 1983, 563-715. (Chinese version) |