Applied Mathematics and Mechanics (English Edition) ›› 2004, Vol. 25 ›› Issue (12): 1382-1389.

• 论文 • 上一篇    下一篇

NONTRIVIAL EQUILIBRIUM SOLUTIONS FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM

顾永耕1,2, 孙文俊2   

  1. 1. Department of Mathematics, Hunan Normal University, Changsha 410081, P. R. China;
    2. Academy of Mathematics and Systems Sciences, CAS, Beijing 100080, P. R. China
  • 收稿日期:2003-02-25 修回日期:2004-07-15 出版日期:2004-12-18 发布日期:2004-12-18
  • 通讯作者: SUN Wen-jun(1974~), Doctor;Corresponding author, New address:Post Box 8009(Laboratory), Beijing 100088, P. R. China:(Tel:+86-10-62014411-3191:E-mail:wjsun@amss.ac.cn) E-mail:wjsun@amss.ac.cn
  • 基金资助:

    the National Natural Science Foundation of China (10171029)

NONTRIVIAL EQUILIBRIUM SOLUTIONS FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM

GU Yong-geng1,2, SUN Wen-jun2   

  1. 1. Department of Mathematics, Hunan Normal University, Changsha 410081, P. R. China;
    2. Academy of Mathematics and Systems Sciences, CAS, Beijing 100080, P. R. China
  • Received:2003-02-25 Revised:2004-07-15 Online:2004-12-18 Published:2004-12-18
  • Supported by:

    the National Natural Science Foundation of China (10171029)

摘要: By the degree theory on positive cone together with the technique of a priori estimate, the nontrivial equilibrium solutions of a strong nonlinearity and weak coupling reaction diffusion system and the structure of the equilibrium solutions are discussed.

关键词: semilinear reaction-diffusion system, equilibrium solution, priori estimate

Abstract: By the degree theory on positive cone together with the technique of a priori estimate, the nontrivial equilibrium solutions of a strong nonlinearity and weak coupling reaction diffusion system and the structure of the equilibrium solutions are discussed.

Key words: semilinear reaction-diffusion system, equilibrium solution, priori estimate

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals