[1] Bellen A, Jackiewicz Z, Zennaro M. Stability analysis of one-step methods for neutral delay-differential equations[J]. Numerische Mathematik, 1988, 52(3):605-619.
[2] LIU Ming-zhu, Spijker M N. The stability of θ-methods in the numerical solution[J]. IMA Journal of Numerical Analysis, 1990, 10(1):31-48.
[3] in't Hout K J. The stability of θ-methods for systems of delay differential equations[J]. Annals of Numerical Mathematics, 1994, 1(3):323-334.
[4] Koto T. A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations[J]. BIT, 1994, 34(2):262-267.
[5] HU Guang-da, Mitsui T. Stability of numerical methods for systems of nautral delay differential equations[J]. BIT, 1995, 35(4):504-515.
[6] Hairer E, Nrsett S P, Wanner G. Solving Ordinary Differential Equations[M]. New York:Springer-Verlag, 2000, 103-117.
[7] CAO Xue-nian, LIU De-gui, LI Shou-fo. Asymptotic stability of Rosenbrock methods for delay differential equations[J]. J ournal of Syst em Simulat ion, 2002, 14(3):290-292. (in Chinese).
[8] Lambert J D. Computational Methods in Ordinary Differentail Equations[M]. New York:John-Willy, 1990.
[9] KUANG Jiao-xun, TIAN Hong-jiong. The asymptotic behaviour of theoretical and numerical solutions for nonlinear differential systems with several delay terms[J]. Journal of Shanghai Teachers University(Natural Sciences), 1995, 24(1):1-7.
[10] in't Hout K J. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J]. BIT, 1992, 32(4):634-649.
[11] KUANG Jiao-xun. The PL-stability of block -methods [J]. Math Numer Sinica, 1997, 15(2):135-140. (in Chinese).
[12] YANG Biao, QIU Lin, KUANG Jiao-xun. The GPL-stability of Runge-Kutta methods for delay differential systems[J]. J Comput Math, 2000, 18(1):75-82.
[13] Huang C M, Li S F, Fu H Y, et al. Stability and error analysis of one-leg methods for nonlinear delay differential equations[J]. Journal of Computational and Applied Mathematics, 1999, 103(2):263-279.
[14] CHEN Li-rong, LIU De-gui. Combined RK-Rosenbrock methods and their stability[J]. Mathematica Numerica Sinica, 2000, 22(3):319-332.
[15] LI Shou-fu. Nonlinear stability of general linear methods[J]. Journal of Computational Mathematics, 1991, 9(2):97-104.
[16] Robert Piché. An L-stable Rosenbrock method for step-by-step time integration in structual dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 126(3/4):343-354.
[17] SUN Geng. A class of single step methods with a large interval of absolute stability[J]. J Comput Math, 1991, 9(2):185-193.
[18] Barwell V K. Special stability problems for functional differential equations[J]. BIT, 1975, 15(2):130-135.
[19] ZHANG Cheng-jian, ZHOU Shu-zi. Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations[J]. Journal of Computational and Applied Mathematics, 1997, 85(2):225-237. |