[1] He J M, Fu Z F. Modal Analysis[M]. Oxford, England:Butterworth-Heinemann, 2001.
[2] Ewins D J. Modal Testing:Theory, Practice and Application[M]. Hertfordshire England:Research Studies Press Limited, 1999.
[3] Silva J M, Maia N M. Theoretical and Experimental Modal Analysis[M]. Hertfordshire England:Research Studies Press Limited, 1998.
[4] XU Ben-wen, JIAO Qun-ying. Principle of Mechanical Vibration and Modal Analysis [M]. Beijing:Machine Industry Press, 1998. (in Chinese).
[5] LU Qiu-hai, LI De-bao. On the advances in modal theory[J]. Advances in Mechanics, 1996, 26(4):464-472. (in Chinese).
[6] Hasselman T K, Chrostowski J D, Pappa R. Estimation of full modal damping matrices from complex test modes[A]. In:The 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C]. La Jolla, CA, USA, 1993, 3388-3394.
[7] Gladwell G M L. On the reconstruction of a damped vibrating system from two complex spectra-Part 1:Theory[J]. J Sound Vibration, 2001, 240(2):203-217.
[8] Foltete E, Gladwell G M L. On the reconstruction of a damped vibrating system from two complex spectra-Part 2:Experiment[J]. J Sound Vibration, 2001, 240(2):219-240.
[9] Rosa L F L, Magluta C, Roitman N. Modal parameters estimation using an optimization technique[A]. In:A L Wicks Ed. Proceedings of the 15th International Modal Analysis Conference[C]. IMAC. Part 1 (of 2). Orlando, FL, USA. Bethel:Society of Experimental Mechanics, 1997, 540-544.
[10] Rosa L F L, Magluta C, Roitman N. Estimation of modal parameters through a non-linear optimisation technique[J]. Mechanical Systems and Signal Processing, 1999, 13(4):593-607.
[11] Garvey S D, Friswell M I, Penny J E. Efficient component mode synthesis with non-classically damped (sub-) structures[A]. In:A L Wicks Ed. Proceedings of the 1998 16th International Modal Analysis Conference[C]. Part 2 (of 2). Santa Barbara, CA, USA. Bethel:Society of Experimental Mechanics, 1998, 1602-1608.
[12] Garvey S D, Penny J E, Friswell M I. The relationship between the real and imaginary parts of complex modes[J]. J Sound Vibration, 1998, 212(1):75-83.
[13] LI De-bao, LU Qiu-hai. Experimental Modal Analysis and Its Application [M]. Beijing:Science Press, 2001, 78-87. (in Chinese).
[14] Zwillinger D. Standard Mathematical Tables and Formulae[M]. Florida, USA:CRC Press, 1996, 130-134.
[15] YANG Lu, ZHANG Jing-zhong, HOU Xiao-rong. Nonlinear Algebraic Equation System and Auto.
mated Theorem Proving [M]. Shanghai:Shanghai Scientif ic and Technological Education Publishing House, 1996. (in Chinese).
[16] Caughey T K, O'kelly M J. Classical normal modes in damped linear dynamics systems[J]. ASME Journal of Applied Mechanics, 1965, 32(2):583-588.
[17] Liu K F, Kujath M R. Zheng W P. Quantification of non-proportionality of damping in discrete vibratory systems[J]. Computers and Structures, 2000, 77(5):557-569.
[18] Levy E C. Complex-curve fitting[J]. IEEE Transactions on Automatic Control, 1959, 4(1):37-44.
[19] Fahey S O F, Pratt J. Frequency domain modal estimation techniques[J]. Experimental Techniques, 1998, 22(5):33-37.
[20] Ruotolo R, Storer D M. Global smoothing technique for FRF data fitting[J]. J Sound Vibration, 2001, 239(1):41-56.
[21] Formenti D, Richardson M. Parameter estimation from frequency response measurements using rational fraction polynomials (twenty years of progress)[A]. In:A L Wicks Ed. Proceedings of the 20th International Modal Analysis Conference:A Conference on Structural Dynamics[C]. Los Angeles, CA, USA. Bethel:Society of Experimental Mechanics, 2002, 373-382. |