[1] Wiggins S. Global Bifurcations and Chaos—Analytical Methods [M]. New York:Springer-Verlag, 1988:313-333.
[2] Moon F C, Holmes W T. Double Poincare sections of a quasi-periodically forced, chaotic attractor[J]. Physics Letters A, 1985, 111(4):157-160.
[3] Wiggins S. Chaos in the quasiperiodically forced Duffing oscillator[J]. Physics Letters A, 1987, 124(3):138-142.
[4] Wiggins S. Global Bifurcations and Chaos-Analytical Methods[M]. New York:Springer-Verlag, 1988:313-333.
[5] Kayo IDE, Wiggins S. The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator[J]. Physica D, 1989, 34(1):169-182.
[6] Heagy J, Ditto W L. Dynamics of a two-frequency parametrically driven Duffing oscillator[J]. Journal of Nonlinear Science, 1991, 1(2):423-455.
[7] LU Qi-shao. Principle resonance of a nonlinear system with two-frequency parametric and self-excitations[J]. Nonlinear Dynamics, 1991, 2(6):419-444.
[8] LU Qi-shao, HUANG Ke-lei. Nonlinear dynamics, bifurcation and chaos [A]. In:HUANG Wenhu, CHEN Bin, WANG Zhao-lin Eds. New Advances of Common Mechanics (Dynamics, Vibration and Control) [C]. Beijing:Science Press, 1994, 11-18. (in Chinese).
[9] Yagasaki K, Sakata M, Kimura K. Dynamics of weakly nonlinear system subjected to combined parametric and external excitation [J]. Trans ASME, Journal of Applied Mechanics, 1990, 57(1):209-217.
[10] Yagasaki K. Chaos in weakly nonlinear oscillator with parametric and external resonance[J]. Trans ASME, Journal of Applied Mechanics, 1991, 58(1):244-250.
[11] Yagasaki K. Chaotic dynamics of a quasi-periodically forced beam[J]. Trans ASME, Journal of Applied Mechanics, 1992, 59(1):161-167.
[12] CHEN Yu-shu, WANG De-shi. Chaos of the beam with axial-direction excitation [J]. J ournal of Nonlinear Dynamics, 1993, 1 (2):124-135. (in Chinese).
[13] Kapitaniak T. Combined bifurcations and transition to chaos in a nonlinear oscillator with two external periodic forces[J]. Journal of Sound and Vibration, 1988, 121(2):259-268.
[14] Kapitaniak T. Chaotic distribution of nonlinear systems perturbed by random noise[J]. Physical Letters A, 1986, 116(6):251-254.
[15] Kapitaniak T. A property of a stochastic response with bifurcation to nonlinear system[J]. Journal of Sound and Vibration, 1986, 107(1):177-180.
[16] BI Qin-sheng, CHEN Yu-shu, WU Zhi-qiang. Bifurcation in a nonlinear Duffing system with multi-frequency external periodic forces [J]. Applied Mathematics and mechanics (English Edition), 1998, 19 (2):121-128.
[17] Leung A Y T, Fung C. Construction of chaotic regions [J]. Journal of Sound and Vibration, 1989, 131(3):445-455.
[18] Stupnicka S, Bajkowski. The 1/2 subharmonic resonance its transition to chaos motion in a nonlinear oscillator[J]. IFTR Reports, 1986, 4(1):67-72.
[19] Dooren R V. On the transition from regular to chaotic behaviour in the Duffing oscillator[J]. Journal of Sound and Vibration, 1988, 123(2):327-339.
[20] Yagasaki K. Homoclinic tangles, phase locking, and chaos in a two-frequency perturbation of Duffing equation[J]. Journal of Nonlinear Science, 1999, 9(1):131-148. |